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coupling of the moc- s of an unstable resonator whose gain is satur
ated by a variable amount by the flux of the lowest-loss mode. 2
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self consistentl 
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SECTION I

INTRODUCTION

Understanding the performance of high-power lasers requires

a model of the system response to external perturbations. In the

case of small perturbations about some equilibriun value the sys-

tem response can be characterized by a (frequency-dependent) trans-
fer function.

As the simplest example of such a transfer function, consider

the problem of relaxation oscillations in a conventional laser. The

system can be described by the following set of equations:

C(g - g ) 1

t-(--) + P (2)~t T s'

where

system flux

g = system gain/unit length

s = saturation flux

T = upper state deactivation time

c = speed of light

gc = cavity coupling

P = external pumping

Let us now assume steady-state pumping with a small per-

turbation, i.e.,

P=P 0+ pi (3)

' . ,.AVCO EVERETT



where Po is the steady-state component and P1 is the perturbation.
Similarly, if

o + i (4)

Sg- go + g (5)

r 0 + s (6)

U we have the following equations (after Laplace transforming, de-
noted by T(s), etc.)

0 1
* (r 2?(7)- -- 1 + / 'o"

In this case

19 4 0) = s C9 ( o(8)

S(ligo) r-1 ) s - r -(

The transfer function matrix, A-I, is given by

-_( r , (9)
s(s + + g -cg O  --J -- (

If any singularities occur with Real s > 0, the system has
an instability.

.AVCO EvE- Fi-7



I
In this case, the roots occur at

S 2r + _I i i : (10)
I

T~ Tr

i.e., at a frequency

I :V go(rl)' 0 =  (i

with a damping factor of

r = 2r/T (12)

and no instability obtains.

In this report we will show that a realistic transfer func-
tion for high-power lasers must include the acoustic, or thermo-
dynamic degrees of freedom as well. The reason for this inclusion1 can be seen in schematic form in Figure 1.

Gain and flux perturbations lead to density perturbations
via local heating. This, in turn, causes refractive index fluc-

I tuations and flux perturbations which close the cycle.

We will show below three separate examples of this expanded
approach to the system transfer function and system stability. The

first two deal with CO 2 EDLs, although the formalism can be qen-
eralized to other types of lasers. The third deals explicitly with

the chemical laser.

We shall see that when the thermodynamic degrees of freedom
are included, the possibility of a system instability exists. In
fact, such an instability has actually been found experimentally

in the case of a cw CO 2 electron-discharge laser (EDL).

We shall now briefly outline the remainder of this report.
Section II contains a discussion of an instability arising from
the transfer of energy from an initially oscillating cavity mode
to a different transverse mode by an acoustic wave. The approach
to this problem is the solution of a perturbed propacator equa-
tion, i.e., an integral equation for the chance in the electro-
magnetic wave after a round-trip traversal of the acoustically

j Iperturbed cavity. Two simplifying assumptions made in this

AVCO 7-'y:



GAIN HEATING
PERTURBATION

DENSITY
PERTURBATION

U FLUX HEATING

PERTURBATION

t REFRACTIVE INDEX FLUCTUATIONU

J6185a
Figure 1. Schematic Indication of the Coupling of Flux, Gain,

and Thermodynamic Degrees of Freedom
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section are that (a) the initially oscillating mode has a uni-
form transverse fluence distribution and (b) that both electro-
magnetic modes have the same natural frequency of oscillation.
It is shown that the oscillatory heating which occurs can result
in an unstable interaction between the two electromagnetic wavesj and the acoustic wave, i.e., a perturbation whose amplitude in-
creases exponentially.

j In Section III we discuss a different type of instability:

alignment sensitivity. Variations in the gas density along the

flow direction lead to both gain variations and slight changes in
the propagation direction of a light mode. We show that this can
result in extreme cavity alignment sensitivity.

In Sei-cion IV we return to the mode-medium interaction
problem of Section II, which is now reformulated in the language
of Brillouin scattering (differential treatment). We show the
equivalence of the differential and integral formulations of the
mode-medium interaction. We focus, however, on an alternative
instability mechanism. We show that an acoustic wave of fre-
quency wA tends to resonantly couple an initially oscillating
mode to a new transverse mode whose natural frequency is off-
set by (A from the natural frequency of the intial mode. This
is just the ordinary Brillouin effect. We derive equations of
motion for the amplitude of the new mode and for the acoustic
wave. The secular equation for the system is derived. It is
shown to be unstable in the limit of negligible gain-flux oscil-
lations (that is, with a ratio of cavity flux to saturation flux
<< 1, so that gain saturation may be ignored). A brief discus-
sion is given of the nonlinear saturation of this process.

An idealization of the mode-medium interaction theory of
Sections II and IV is the implicit assumption that the net loss
(= loss minus gain) of two cavity modes may be very nearly equal.
(See Appendix A.) At the beginning of this program it was realized
that no self-consistent calculation of the eigenmodes of a loaded
(i.e., gain-saturated), unstable resonator of moderate Fresnel
number, such as a cw electron-discharge laser, existed. Such a
calculation, which clearly is quite relevant to this program, is
described for the first time in Section V. Using a new computa-
tional technique developed at AERL, we have solved for the self-
consistent eigenmodes of an unstable resonator whose gain is
saturated by the presence of a strong oscillating mode (the
"fundamental" mode). We find that the fluence distributions of
the various eigenmodes are modified by the saturation, and that
the eigcnvalues are shifted from their empty-resonator values.
In particular, the empty-resonator loss degeneracy which exists
at certain half-integral values of Fresnel number disappears in
the presence of a saturated gain, i.e., different modes are found
to have different losses. This is a significant new result which

-((
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suggests that it is not advantageous to avoid half-integral values
of Fresnel numbers in the design of an unstable resonator which
will be operated in the saturated-gain regime. From the point of
view of our program, the results of this section suggest that thle'
model of Sections II and IV, which assumes that at least some modes
have nearly equal net loss, is somewhat simplistic. However, the
nonuniformity of the gas density has been neglected in this sec-
tion; it is possible that when the nonuniformity is taken into
account the net losses of several modes may be very nearly equal.

In Section VI we extend our instability-theory techniques
to a relatively simple model of a supersonic chemical laser
(11F/DF). The model corresponds to a one-dimensicnal flowfield.
The fluid-mechanic, chemical and optical coupling equations are
obtained and Laplace transformed. The stability of the system
is studied by use of the Routh Criterion, which allows the sign
of the roots of a polynomial equation to be determined. Numerical
calculations for typical operating conditions of the model laser
show that it is stable. The important result of this model is
that it determines the transfer function of the system. The
transfer function can be used to predict the magnitude of the
laser response to any external perturbation.

Finally, in Appendix A, we discuss the acoustically per-
4-urbed optical resonator in a more rigorous fashion. Using the
integral-operator formalism, we derive t2ie equation satisfied
by the amplitudes of the various eigenmodes in the presence of
the acoustic perturbation. We reformulate, in the language of
quantum mechanical perturbation theory, the difference between
the instability mechanisms discussed in Sections II and IV; both
follow from the present treatment. We suggest an alternativeU model to explain the experimentally observed flux modulation in
the electron-discharge laser: one in which only a single eigen-
mode oscillates, but an acoustic standing wave both modulates the
cavity loss and is driven by nonuniform heating caused by the3 nonuniformity of the eigenmode and changes of the cavity flux.

q
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SECTION II

A THREE-WAVE LASER INSTABILITY

A. INTRODUCTION

It has been known for some time (1 ) that high-power CO 2 cw
Electric Discharge Lasers (EDL) exhibit output instabilities.
This is evidenced via a spontaneous oscillation of the output
flux usually resulting in full modulation.

UAn example of such behavior for a typical CO2 cw EDL is
shown in Figure 2. To the left of point "a" the output is stable,
while to the right of point "b" the instability has already built
up. Between "a" and "b" the output may be considered linearly
unstable, and periodic in nature. This suggests the possible
success of a linearized model, with the (linear) instability
evidencing itself via an exponentially growing root of the char-
acteristic equation of the system.

U Corroboration of such a model may be obtained by reviewing
interferograms of the laser taken with flux extraction (Figure 3).
Also shown is the laser output flux versus time with the points
corresponding to the three interferograms as indicated. We note
the presence of low amplitude density (or acoustic) standing waves
between anode and cathode where the instability in the output flux
is already evident. It is as if the laser were being acoustically-3 Q-switched.

Further evidence of an acoustic connection can be found in
the period of the output oscillations. Typical oscillations of a
gain-flux system, such as are found in relaxation of a gain-
switched spike, are of the order of a few microseconds. As can
be seen from Figures 2 and 3, the period of the oscillations is
of the order of 50 Psec. For typical anode-cathode separation
of about 5 cm, with an acoustic mode number - 5 (Cf. Figure 3),
the acoustic time is typically

t - (5 cm/S) 35 Psec3x10 cm/sec

1 1. Yoder, M.J. and Ahouse, D.R., Appl. Phys. Lett., 27, 673 (1975).

U . .AVCO. vj vT
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Figure 2. Evidence of Linear Instability. The upper trace in the

current. The first three msec show a de output where-

upon the flux begins to oscillate. At this point there
is a floating zero level due to detector sensitivity.
The lower figures are expanded time scales at incipient
breakup of flux.
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INTERFEROGRAMS OF CW EDL CAVITY WITH FLUX EXTRACTION; 20,000fps

FLOW. OUTPUT FLUX TRACES FOR MOVIE INTERFEROGRAMS

~ < \'C~: FLUX

b II
T 1 A. .'.LT C"F ... A n-"-v--"I f,.,,. ' . ;I

I .L I

T 2 m% 4 t '' L S T >; F-eA ' "., . s/

G63 21 /G?297

Figure 3. Mach Zender Interferograms of the Flow. The output flux
trace is shown as the lower curve in the upper riqht with

positive downward. The flux is stable up to about 2 msec
whereupon the Q-switching occurs. The three interfero-
grams are before, at, and after onset of full scale
oscillators. Each picture shows two exposures L.,;par-itud
by 25 hsec. The large scale waves evident at 4.8 rnsec
are a result of the oscillations and not the cau,,e as
they do not appear earlier. At 2 msec notice the
presence of a standing transverse wIve of a fmw fri I::;

and about 3 or 4 cycles. It is this wave that producesj the oscillations in the flux.

d
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In this section, we will describe a model of flux-gain-
acoustic (density) coupling which admits an instability and
derive an analytic expression for the unstable root in certain
lit....ing cases. A subsequent paper will present a more rigorous
formulation, comparison with experiment, and experimental methods
of removing the instability.

B. THE MODEL

A schematic model of the CO2 CWEDL is shown in Figure 4.
The flow, anode-cathode, and optical axis directions are along
the x, y, z axes, as shown in Figure 4.

The anode is below and the cathode above, the plane of the

tween the mirrors. Assuming that the change of the medium is
negligible in a round trip photon time (2 L/c) we may write the
following integral equation for the complex amplitude

u (x, y, z = 0, to +

fKop (x, x'; y, y', z = 0, s, t ) u (x', y', z =0, t ) dx'dy'

(13)

In Eq. (13) u represents the amplitude for either the left
or right going flux; the propagation operator K0  is a function
of the state of the medium; and s denotes the path taken by a ray
from (x', y', z' = 0) to (x, y, z = 0).

In the presence of small perturbations, we make the decompo-
sitionU

op op (o) op (1) M (14)

* for the propagator and

u = exp {i(k Z - 0 t)}[u (x, y, z) + U1 (x, y, z t)] (15)

for the complex amplitude, where ko, r o are the wavenumhber and
angular frequency of the light. both iUo and u, are a!:;umed to
vary slowly over a distanc comparalble to a wavelength. By defi-U nition of uo, Ko (o) and of what constitutes a laser mode we have

UAVCO LVEiLII
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Figure 4. A Schematic Description of the CO CWEDL
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I UO (XI y1 z = 0, tO  C2L
0 0/ (16)

I K op () (x, X', y, y'; z =0) u0 Wx, y, z' =0) dx'dy'

Keeping terms to first order in Eq. (13) and using Eqs. (14) - (16)
we have

ULt + ) + U, it + 2 exp {- iw ()} Kd0 0l (t 0O op (0)o+2)) f KU dx 'dy'

+ fKop (I) uo dx'dy' + fKop (o) u, dx'dy' (17)

If 2Lwo/c = ni where n is an integer (i.e., we have a longitudinal
mode) then

Ul(x Y, z = o t + K (i K u)u dx'dy' + K uI dx'dy'

(18)

or

xpdi tK -6(x-x') (y-y']f u1 (x', y', z' = 0, to )dx'dy'

I J

+ix (KZ=O ) d'y dx'dy'

+ fK 1 (x, x'; y, y') U0 dx'dy' (20)

In physical terms the second term on the right-hand side of
Eq. (29) represents scattering "into" ul, whereas the first term
is leakage "out of" u1 . If uI is an approximate ei(enmode of the
loaded resonator with eigenvalue close to unity, the first term
on the right-hand side will be second order and can be dropped.
We investigate the meaning of this condition in greater detail in
Appendix A. We have then

.-:AVCO LEV E 11i-1 -
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t - 2L J K1 (X, x', y, y') u° dx'dy' (21)

In most applications it is the flux perturbation which is
experimentally of interest and Vhich couples to gain and density
perturbations in the medium. To obtain the flux equation corre-
sponding to Eq. (21) we multiply both sides by uo* and take the
real part of both sides. We obtain

uat(U + U*) =2L Uo* K, no dx'dy ' J + c.c. (22)

We note that

U=~ o u+  + 2 = U 2 + (U*u 1 + u u1*) +0 (1u 2)

(23)

5 so that

i = Uo*Ul +  uo0 u'l* (24)

We now assume that the lowest mode uo is independent of
x,y (i.e., spatially uniform), so that uo may be taken outside
the integral on the right hand side of Eq. (22). This will be
most valid for small equivalent Fresnel numbers, but is a
reasonable first approximation in any case.

c - 1 [- K , dx'dy' + c.c. (25)

As we have noted K1 will be directly related to the perturbations
of the medium. We now turn to expressing K1 in terms of density
and gain perturbations.

Assuming the medium reacts slowly in a time 2L/c, the
propagator Kop can be written in the form

K (x, y; x',y';z= 0, S, t) =

op (26 )

3 2)L exp i ?7f n(x, y; x', y'; t, z' = 0, s) d s

x Iy (
3 :AVCO 12 VL. LTT
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Where the path is the line segmented geometric path from x', y')
to Lx,y) and n is the complex refractive index. An illustration
for the typical points is given below in Figure 5.

For the unperturbed medium, we have, simplyi 1
Op (o) 2XL exp { i -, nods (27)

(' ,y')

3 Hence, if

i = n + n (28)

0 1

op ( K =op -K op (o) :-K op (o) [exp i in 1 ds} I1

f (29)

For sufficiently small values of n, (less than one fringe dis-
piacement on an interferogram) we may expand the exponential in
Eq. (29) to obtain

FCX'Y) 1
Tin1 ds JK ()(30)(ix,y)Mop (1) X I -- -I,,y,)op (0

Substituting Eq. (30) into Eq. (25) there results for either the
left or right running flux

I ( , 2iy)
- 2L X fKop (o) J n, ds dx'dy'

pyp
(31)

- Kop* (o) nl* ds dx'dy'

(x' ,y')

g
S

) 20

5 AVCO VI L II
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Figure 5. Illustrating the Propagator via which the t-vedium at
(x' y' ) on the Nth Pass Inf luences the Light Amplitude
at (x,y) on the (N + l)st Pass
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If the left and right flux are equal, Eq. (31) can be considered
as the equation for the total flux. The right-hand side of
Eq. (31) may be transformed by writing

op (x, X'; y, Y')J n (s, t) ds

op (x' y')
f (32)

- JK 2 (x, y; x', y') n, (x', y', t) dx'dy'

U (definition of K2 )

If n I is assumed to be independent of z, then K2 will be a property
of the unperturbed laser (i.e., independent of nj). As we shall
see below, there exist excellent reasons for making this assurnn-
tion. Finally, writing

n1 =nR + i n (33)
RI

I there results

- 2 (K K n dx'dy' -f(K + K n dx'dy'

(34)

We now define

U i 2 ig

' (X, X' y, y) - (K2 - K2*) (35)

a I(x, x'; y, y') K K2 K 2* (36)

. AVCO I VL1-;[1



where 'g is the Gladstone-Dale constant for the medium and
is the density of tho gas mixture at one atmosphere pressure.
Noting that, by definition

- gn (37)

R a

and

2 T1 n =g (38)IsI

we have, finally

I I (X' Y' t) = L[/L px;Y ' ~ (x', y, t) dx dy

g + feI(x, x'; y, y') g, (x', y', t) dx'dy' (39)

To appreciate the physical content of Eq. (39), we transfori,
spatially as follows:

(a) In the y (anode-cathode) direction we take a finite

Fourier cosine transform.

(b) In the x direction we perform an exponential Fourier
transform. Since the steady-state flux, 'o, is nonzero only over
a finite region, we get convolutions. To finesn-e this proiemwe smooth in kx-space over a region 2/b, where b is the length
of the flow channel. That is, we define

= 2/b +/ (Kx)dx (40)
K /b

We may now cast Eq. (39) in the form

dt 2L= n ' ,KK' Olm'K' + I-L111K,' glm'K' ( ]

m' ,K'
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We now postulate that one acoustic mode will be favored above all
others, and that this mode has no variation on a scale less than
b (in the flow direction) and has m = , say, in the y direction.
The reason for this assumption, as well as a prescription for
estimating 2, will be given below.

Equation (41) now becomes the pair of equations.

: 1 [ c, o + 2 , l (42)

dt 2L LR oZ,oo o,

(where Z is the medium thickness)
d~l k C 09o

=___ 0 a + 2 j (43)
dt 2L LR£ U 0,oo M gl Z43

In Eqs. (42) and (43) we have tacitly assumed

Imm';oo = nm'4

since the main effect of a gain variation is to change the flux
in the same spatial manner. We note further that Eq. (42) is an
equation for the rate of change of the output flux and as such

a Pl - -g (45)o£o ,o 1c

can be considered to be a time varying modulation of the cavity
coupling. Equation (40), on the other hand, describes the varia-
tion of the "Z"th Fourier component of the flux distribution.
The following physical interpretation can be given to Eq. (40).
When the laser is turned on there will be some acoustic noise
(density fluctuations) between anode and cathode which can be
expanded in a Fourier series. Each acoustic mode constitutes
a phase diffraction aratinq for the incident flux o. In Appendix
B we will show that the following statements can be made about
the scattered light:

a. The acoustic gain ind optical modes will have a trans-
verse variation with period a/n, where "a" is the anode-cathode
separation, and n is given by

n 2 a2 XL (46)
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b. A plane wave scattered by an acoustic wave will, after
one trip, produce a flux oscillation with the same transverse
wavelength as the original acoustic wave.

c. The variation of the acoustic perturbation in the optical
propagation direction can be neglected.

Furthermore, we note that if we take uo as a constant for
the lowest mode, then the higher Fourier components ul (recall
iz = Uo* ulz + Uo ul,*) are orthogonal to u. and it is reasonable

to assume that the higher-order modes are representable by sines
and consines to the same extent that the lowest order mode is
representable by a constant. This simple picture, incidentally,
allows us to make a realistic estimate of the influence coefficient
IRZ.,oo (henceforth referred to as c) in Eq. (43).

Technically, the quantity c enters into the model equations
as the influence coefficient from a sinusoidal density variation on
one pass to a sinusoidal flux variation on the next pass of the
laser radiation.

The radiation diffracts through the standing acoustic wave,
which acts as a phase grating, and completes a round trip, rein-
forcing the density wave. Thus reinforcement arises by having
the perturbed radiation in the same physical shape (samc spatial
Fourier component) as the density wave. The reinforcement is
accomplished via heating.

The perturbation in the amplitude of the scattered light
(due to diffraction) is

u (e - 1) u i u 6 (47)

Where u. is the incident amplitude and 6 is the (sinusoidally,
spatially varying) change in the optical path. The change in the
flux, p, is given by

u *U + ul* luo12  = (48)

Hence, in one pass

4A 1 2 
(49)

o Pa m
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d Where m is the optical length through the medium, ,Pg is the
Gladstone-Dale constant, and Pa is the density of the medium
at one atmosphere

The equation in which a enters is of the form

1 (2Zmg1 % + a o)  ¢o (50)

3 IFrom this equation, the change in one pass due to a density per-
turbation is given by

A( 1 2L/c "it Pl
--_3 ~ zl- (51)o o Po

By comparing Eqs. (49) and (51) we obtainU 2Tr Po £m
2 B m 

(52)P a

We now proceed to a consideration of the gain and heating
equations necessary to complete the model. The gain equation for5the flowing CO 2 medium is (Y E saturation flux)

+ v 1) _q - q + P (53)

Where T is the effective deactivation time from the upper lasing
level of the C02 molecule, including the effects of the nitrogen
in the gas mix, and P is the pumping.

Once again, we consider the perturbed form of Eq. (53)

(v is the mean flow velocity)

Sagl g1  g1  g9o1  go (54)
+ v --- - - -__s (54)

at x 1 -1-s 1

The effect of the flowing term is . amp the growth of any per--
turbations with a damping time of tiu order of the convection
time through the cavity. This is of the order of b/v where b is
the beam dimension in the direction of flow. Hence, Eq. (54)
becomes
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g I  - rgl vg1  go(r-() '5

a t T 0

Where r - 1 + -0

The kth component of Eq. (55) will be of the form

ag1 £ v = -rgl, o(r-1) 'If(6

at b gl T - T o

To complete the coupled set of equations we use the fact that
perturbations in the gain and flux amount to a perturbation in
the heating profile in the medium. This, in turn, will affect
the density perturabations, completing the loop.

The acoustic equations for a flowing medium and non-
isentropic flow can be obtained from th, equations of momentum,
continuity, and from the first law of thermodynamics. In
Appendix C we show that the heating equation is of the form

+~ ~ v C2 2  2p
+ P, = (Y-l) V P (57)

Where P1 is the perturbation in the power per unit volume given
by

V 1  V 3

P1 -- (go 1 + gl4,o) + _v3 gl s  (58)

where v - - 1 ' (59)

and V3, vl represent the upper and lower frequencies of the lasing
transition. Combining Eqs. (57) - (59) with the prescription (Cf.
Appendix C),

v (60)
V ax b

(where b is the dimension of the beam in the direction of the
flow) we obtain

27*
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+ + -) 2 CS2 V2 Pi

(at b =- (G61)

(Y-1) V2  [ '1 (gol + glee) + -) gl sJ

For the Zth component we have

2  2 y (I a(62)

Where "a" is the anode-cathode spacing. Hence,

+ ) + CS (12

/Z 7r 2 [V 3  
(63) +gl

(y-i) (gerbi + (i6o) + glz's(

Equations (43), (56), and (63) constitute one set of coupled
equations. To find the normal modes of the system we use Laplace
transforms of our variables p,,, g,, and

1X 1S 1 = I Wl()e - S  dt (64)

etc. This allows us to make the replacement

a- 4l(t) , S @I(S), etc. (65)

In matrix form our coupled equations become

A j/go = 0 (66)
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U
U
u 

Where

S -Cgo -- 2L

U - r-l r

T b3 2 vI goo 2 ge) °  3 2

(r1-) + _(r+l +C(
1 (67)

Equation (66) contains both the normal modes and the instability
criteria for the system. The normal modes can be found from the
secular equationU

IA (S) I = 0 (68)

Equation (68) can be rewritten in the form

U 5
n S 0n (69)

where y are0functionssnof( are functions of the system parameters. The roots of
Eqs. (6) and (69) are the normal modes. An instability obtains
if one of the roots has a real part greater than zero. The con-
dition that no root has a real part greater than zero can be
formulated as a condition on the coefficients ,n- (the Routh-
Hurwitz conditions). We now proceed to a determination of the
stability boundary (Eq. (98)).

U C. STABILITY BOUNDARY

Equations (67) - (69) yield the following values for )'n:

o (S s 2  S 2 ) (S 2 + S 2 ) (y - i (2 0 (70)
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2 Lr( 2 + S2 + 2
(S A 2 + SRA2 (S2 + SRB 2 ) + 2S v [SA(SB 2 + SRB 2 + SB (SA + SRA

+2 (1-i)a -) PO (71)

2 = Sv(S A 2 + SB +2 + + SRB 2 + 2 A(SB 2 + SRB ) + S B(S A  + SIR 2

(72)

Y3 2Sv (SA + SB) + S A2 + SB2 + SRA2 + SRB2 (73)

+ 2(S + S (74)

Y5=1 (75)

In Eqs. (70) - (75), Sv represents the acoustic damping and is
given by

-V (76)

where b is the length of the beam in the direction of the flow
channel, SA, SRA represents the damping component and the fre-
quency of the (unperturbed) acoustic root and are given by

A 
(77)

SRA = C I (78)

SB, SRB represont the damping comprint and tb .. c the
(unperturbed) gain-flux (relaxatiot ," or) mode and are
Given by

S B  r / 2 1 ( r - 1 + o / ) S ) ( 7 9 )

SRB= (80)
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The Routh-lurwitz conditions require that for stability the
following conditions obtain:

n > 0 (n = 1.. .5) (81)

Y4  '2Y5 > 0 
(82)~Y4

Y2 - Y4 -- 0)>0(83)U - YO(Y4 Y4YS) 0

Y 2,- - (Y 4Yi - foY5) (84

To make the algebra tractable we take the leadinc terms in£qs. (70) - (75). In determining the leading terms, we note thatfor typical systems

2 2 2 2

RB >> SRA >> S , SB 2  (85)

u Then we take

0  S v SR 2  RB2  Pa (86)

y2 S 2 B + 2S2 SRB 2 + P X -y (87)

2

Y2 ; : 3 Sv S RB (88)

U Y'3 RB 2  
(89)
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4 3S v + 2SB  (90)

Y5 1 (91)

where

P 2 - i) () (92)

Now Eq. (84) is equivalent to the condition

+22 2 2 - -13

YoY 2 Y 3 Y 4  + 2 I'0YI 4 - YoY 3  Y 4  + YIy 2y4(Y3"r4  - 'Y2)  - l2 T 4 3 > 0

(93)

Inserting Eqs. 86) - (91) in Eq. (93) and usin,; the con-
ditions of Eq. (85) we obtain, after some tedious alobr-1,

tjS + 2S 4 SRA 2 SRB6 + 2Px SB SB4 (1 + 3 S I
v 2B v B V (1 V

(94)

Or, if a < 0,

2(Sva) S RA SRB (95)

1 + 3(Sv ) -
SV

The Eqs. (81) - (83) are trivially satisfied except for the con-
dition that -y > 0. If C1 > 0, this ijo10kS the, colnl~itiUn th Lt

Pca < (Sv ) S RA2 3 2 (96)

Combining Eqs. (95) and (96) , we have

2 SIS 2 2 V I 2 2
-2 v SRA2 SB < e 2_IA"I:

<- C".. . (97)

I + 3S 1
V V

as our stability criterion. 32 AvC o



Utilizing the definitions contained in Eqs. (76) - (80)
and Eq. (92), we have, alternatively

1 2 A 2 v
LA<+- - (y-)< - -<+

2 - . 1+31 VT P a in b'
- 2 ¢S -- CS I + 3 -

(98)

where

A = Do CS 3  (99)

D. DISCUSSION

that Equation (98) can be put in a more useful form. We note

US = SA (100)

T A PA (201)

Ii PO

PO
A = CAA(102)

Where TA , 'SA, 'AA denote the values of ,, a at I rrCss-rLt,
of one atmosphere. For a value of tR < 0 (for which the left s'-
of the inequality of Eq. (98) obtains) the limitig v'a"lue of . /
which we denote by (Po/PA) cr will be given by A

£ (~~)cr )2m 1; (1)

(103)
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Let us consider a typical system with the followingU paramters

-3

U A  0.6 kg m

v/C s  0.5

L/ : 2
m 8/ 2

SA = 1.6 x 0 8 Wm

1= 10 m (]05)

(7-1) = 0. 5

Bg = 1.7 x 10-

Cs  360 m/sec

b = 7 cm
-

T = 10 sec
0

Under these conditions the maximu-m alo..ablc d,,n it'
(pressure) is given by Eq. (103) as (;o/.A ) cr 0.38.

It is interesti nq to note that Eq. (98) dines net contain
thc [lux explicitly and i s thus inlerendent ()f the, lv,- of
pumpinq. We must be careful, however, to Mole tnht !:,. (98)
holds only in Eq. (85) hoTs. This iine ics a condi t s on t ,

flux exceed inq soie mini:: mt:l /()unt. Also, t". (o ,) a< s t h)
substitution of 'I.s. (8() - (91) for Er, p;. (70) - (75). If the
latter are used, 'o will enter the stabi it' conditiu;n ex pI ic it 'l.

The linear inst ,bility, if it (,:.:i 1ts, w la '..e ha.', son,
involve an exVonentiav ,I o'.,i n, o.t .,. . Th...........

they have a smiall .. ::: ti:. ce, , i to :,. - ,il:.-: . '.: r, ..
(i.e., Sv  << SB). B Hncu,

I¢ ; - (, I ) ,: c S (

SIX.R
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and

a 1 C ( mg Z a (107)
0 0 2L Zi CS  0o

and the amplification can be quite significant (in practice
103 - 104).

Equation (98) suggests difficulties in trying to run a
high-powered CO2 EDL in a cw mode. A solution suggested by this
analysis is to damp the acoustic mode further by means of ang acoustic absorber: for example, an acoustic muffler on the cathode.

This has been tried and found to be successful.( 2 ,3 )  In a
subsequent paper we will investigate the effects of an acoustic
absorber, as well as more realistic kinetics and compare our
results with experiments undertaken at AERL.

V
V
U
V

5 2. Kellen, P.F. , Mattson, A.C. , Ahou;(,, D.R. , ind Yoder, m.J.
Optical Engineering 18, 340 (1979).

5 3. Korff, D. , G1 ickler, S.L. , and Dfaur;hert.', J.D. , "Acou ;tic
Instability Mo~lol for Iii,1h P we - cw ,. DI, L, ,;r r , : 0th A:Inu ,1
Gaseous Electronics Conference, Palo Alto, Cal., Oct. 18-24,
1977.
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SECTION III

ALIGNMENT SENSITIVITY

In the previous section we have ji nored c:.i ri a .1 O.:- in
the direction of flow. Such variations can lead to extreme all n-
mert sensitivities, as we shall now show.

There are two effects involved. The first js the variation
of output coupling with position of the otical axis on the feed-
back mirror. This is basically a diffraction effect( 4 ) and is
illustrated in Figure 6.

In Figure 6 Neq is the system equivalent Fresnel number,
defined by

2
N - (108)

eq 2NL M

whIere a is the colljmatino mirror diam,, tor, 1 is the s 'stm,,
magnificaticn, and the other sy . bols have ar2 n ,iai, a
c is defined as the nor:al ized positien (one dimension:) of the
optical axis on the feedback mirror + ± 1, 0, - 1 correspond
to top, middle and bottom of the mirror, respectiveLy).

The second effect is the variation of the system %ain with
position of the optical axis. This effect aris c leciase of th"
variation of the cain with tem:o),-erature for a 'articu1 ar val cv of
J, the initial ancular t1om-ntu: of ths radiatinc malo:vue. this
variation arises through the partition function. In fact,

gain _ 2J + I- BJ(J + I) /T(T e(109)

where B is the vibrational constant for the trans ition and T is
the temperature.

Our flux equation (for the variat ion of th. total flux,
not a Fourier com-ponent) is (x is the flow dircct ion, and x = 0
is the optical axis)

cb (110)ct - Cio - C~ 1o
0 0

4. Yel IIn, P. and '>mi th, m. opt. 8n, p. I ).7- 160
(March/April 1979)
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where pl, proportional to the tilt angle, is defined by

7- x 01 (x) Ix X
(x 111)1

cc =dimensionless coupling constant

3 IWe shall derive al below.

The gain equation along the optical axis (or the average
system gain across the beam, which can be shown to the equivalent)
satisfies the equation

I91 g g (go l + gl 'o) dl3t _ - - + (112)
TdI dt

In Eq. (112) the last term on the right-hand side repre-
sents the effect of the gain variation with optical axis position.
We rewrite Eq. (112) in the form

gl g _ (go0 l+ g 1o )  C2 bg 0  '

+ (113)3t s PO t(I 3

I where a2 is a dimensionless constant whose value will be found
below.

* The heating equation takes the form

a 2 _ C 2  2 ) P (x) = (y - 1) 9 2 f(x) + (114)t (t s x 1 0go + glee )

Where f(x) denotes the variation in gain along the flow direction3 (go and 91 are assumed to have the same spatial dependence). The
equation for Ul (- P' (0)) then becomes

g(3 _ Ca2  2 = (Y - 1) 9 x3f(x)I 0 +

(115)
where the prime denotes derivatives with respect to x.
Henceforth, we take

2P (x ) x A V 2O (116)
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N

to simplify the analysis. If a s Landinq wave exi st; i : t 1. f I o'.;
channel (analoous to an open-ended organ pipe) thein 1I>I. (]if)
follows naturally. In any event, it serves as a reasonble oi-
proximation. Similarly we take

(y - 1) 3 f 0 (y - 1) (117)

where U 3 is derived below.

U Our three coupled equation for this case are given by
(sl)

U A g (s) 0 (118)

U ci (s)

where (r - 1 + - and v is the gas flow velocity)

U. b

s - c 0  cg° Po

s + + (119)T s PO Po
__go - 3- V (s+ ) b2  )

2
3( (s v v 2 +

A Routh-Hurwitz stability criterion, usinq leading-order terms
as in the previous chapter, leads to the stability requirement

y -h 1) A 2 1 (120)(¥-I 1l3 <¢ t Csg °
s c so

where

A 0 o 3and t = b (121)

We shall now derive expressions for a1 and (-3 (which, as
we shall see, is - f2 ) .

3- :AVCO V[ -1 T



To determine .t we must relate changes in u to changes in
P' (X = 0). We have

27 2r 1122)
A tilt A (122)x

where Q,,, is the thickness of the optical. medium and 'tilt is the tilt
of a ray due to refraction. The optical axis will then tilt by

-j ti (123)

Furthermore,

d1  (124)

where dj, R, are the diameter and radius of curvature of the
feedback mirror, respectively. Hence,

2R_1 2M z 
(125)

A- M- 1 t M

Now, let us denote the change in gc when c changes by (l/Necj) as
Fgou Then,

Ag = I Ac
AC

= on eqAE

2R 1  2m (126)
(g)N - - . , . -- , AP'(0)o eq d 1  M 1 a

0 A'(0)

Therefore,

R__ M PO001 = fl q M - 1 b d1  0a (127)

For a typical case

R0.1, N 10, 2, b 01

(qgo) eq

0  -4 1

01go Ne 2I  M- 1 0

]goo

al ~~~ ~ ~ V t it Te I -- d g

R. = 100 = 00
For 1 2yia cam

q , , 0., NeqAV1C, MV=2, b10.



so that

We note, furthermore that al will be wiuch less than its
calculated value if the system is aligned at, e.a., points A or
A' in Figure 6. (The calculation in Eqs. (126) and (127) is

for point B in that figure.)

We may schematically denote the variation of system gain
with optical axis by the diagram in Figure 7.

I3 An analysis identical to that abova leads to

4M R1 9 M (128)
2 =  ' Neq M - 1 b d1 Pa

Now, a 2 arises from the temperature variation of the gain
as given in Eq. (109).

Taking

J = 18, Tinle t = 173 0 K, Topt. axis = 3800

we obtain

U 2 0.5

for a typical 
case.

Since a2, a3 are both dimensionless constants due to the
same effect we take them to be equal. We then obtain the follow-
ing stability boundary.

2 4MR, 2 2 o)2 2p Cs 3  1
1eq) (M - ()bd2l o 0a C1 (129)'~q'- )b J \a/ < s Csgo Tc

For a numerical example, take

M = 2 R1 = 20 m b = 10 cm

q = 0.1 T]' = 0.05 M = I m

Po/Pa = 0.1 d1 = 2 cm Pg = 2 x 10 - 4

go 0.5 m -  C s = 300 m/sec Tc = 10 - 3 sec

OCs 3 N = oC 4 - 20 Nq =1



. .. . . .. . . .... . . .. .. .. . ....

z

(9

II t
INLET OUTLET

OPTICAL AXIS POSITION ALONG FLOW
J6187

Figure 7. Schematic Picture of System Gain Variation with
Optical Axis Position
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In such a case, we haveU 32>2
25 >  (unstable)

U An instability in this system would result in larqe wander-
ings or the pointing angle and possibly to line jumping if the
optical axis moved sufficiently far so that the gain were greater
for a different J number.

Even in the absence cf an instability, of course, the
matrix A determines the sy.;tem response to external perturbations.
In particular, if we have mirror vibrations; (Wc perturiation) thL,
coupling ensures that we would obtain a response at the acoustic
frequencies. Such a response would not obtain in standard treat-
ments.

Finally, we stress that if the system is aligned at a
stable point (A or A' in Figure 6) no instabil ty ebtAins. i
(or n) is negligable and Eq. (129) is automatically satisfied.

U
I

I

U
U

!I
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SECTION IV

MODE MEDIUM INTERACTIONS: DIFFERENTIAL FORMULATION

A. INTRODUCTION

The analysis in this section will deal mainly with an attempt
to recast the instability discussed in Section !I in terms of more
conventional medium instabilities such as are found in plasma
physics. Some of these, such as the free electron laser, harmonic
generation, and optical modulation by sound waves are beneficial.
Others, like thermal blooming, self-focusing and mode-medium
interaction (MMI) are deleterious.

The analysis in the previous two sections emphasized the
Huygens-Fresnel-Kirchhoff integral solution to the wave ecuation.
In this section, instead, the differential equations will be
analyzed and comparison with the other derivation will he made
along the way. The differential formulation has the advantage
that it can be easily extended into the nonlinear recnime, in which
the amplitude of the perturbation has built up to a large value.
It also has the advantage that it demonstrates how the instability
discussed in Section II (hereafter referred to as 'IMT-l) is related
to more conventional instabilities. To do this, Maxwell's equations
including a time-varying conductivity (to account for cavity and
medium losses) and a time-varying dielectric function will be used.
It will be seen that MMI-l results when the conductivity is modulated
and when all the electromagnetic waves have the same unperturbed
frequency. This is a form of nonresonant amplitude modulation and
instability, which is different from the con':entional. method of
amplitude modulation in which resonant coupline of electromagnetic
modes which are separted by the modulation frequency occurs. On
the other hand, Brillouin scatterinq, which is primarily a phase
modulation, results when the dielectric function is modulated.
The coupling is strongest when the electromauno-tic mods:- are
separated by the modulation frequency. This is the mechanism that
will he studied in this section. The ecua t ins of ,,ot irj for the
electrolfla(;netic and acoustic waves are drrived. Th s(-cular
determinant is solved. it is shown to have uns ,7l], r,')ts in the,
limit in which the ratio of cavity flux to th, s;aturation flux is
small, so that qain-flux oscillations can be neglected. Finally,
the nonlinear reqime is briefly examined.

B. MODE-MI;DIUr IN TEPACTIO..)

Our startingl point will be MS, ic:] 's ec ,t in:; .i, i ,
appropriate boundary condit ions (cavity lo (',) and : ' , ,
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and losses. Since the laser is in an unstable-resonator config-
uration, the boundary conditions are rather complicated (see
Appendix D). Thus to simplify matters, we will lump all the loss.s
in a phenomenological conductivity function. The medium gain will
be computed semiclassically from the imaginary part of the suscep-
tibility. A simple model of this is discussed in Appendix E.

Thus, the governing equations are, in mks units,

V D =0 (130)

V • B = 0 (131)

VBx-E (132)

V x H = J + M (33Vx--t+ (133)

where D = cE, J aE, c contains the effects of dielectric polari-
zation and o contains both the medium losses and the cavity loss.
From Eqs. (130) - (133) the following wave equation can be derived
for transverse electromagnetic waves:

2 - i t (134)at2

(p0 is the free-space permeability). Assume that

(0)( )C = £ (r) + E(i) (r,t) (135)

o = (r) + a (r,t) (136)

The entire scattering calculation can actually be done in terms of
a or c. The only reason for keeping both is to stick to the con-
vention which associates the gain of the system with the imaginary
part of c and the losses vith the real part of c. Similarly,
scattering is associated with the real part of , and not the
imaginary part of a ev-n though formally (with the prop-r inter-
pretation) it can be calculated in terms of either function. In
what follows we maintain the convention. Substituting Eqs. (135) -

(137) into Eq. (134) leads to,

2 (0) (r 2 . (0) 5E 2 (1)V E t -0 (r,t) - iiatt (r t)

(137)
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This equation will now be sovdin a p'tula v ah
However rather than expanding in normal m-,ode, .; ne
rultiple-t inc-scale expansion of secul ar equ1at i s(~)Piad i
E =£0 + E (1) + (2) , realizing that E (0) 0 si nce teeis n~o
steady-state space-charge field, leads to

()2 (l) (0) 1)

I I I~ I I I -' .. .. . -

v 2 E - 0 0 (138)0 2 0 at

2() (0)3 2 E (2) (0) 'D (2) ~2 (1) (1)-(1 ()
0at2 - '0' a t 0 9t 2 0-;

(139)

If C~l and aol in turn depend on the electri c fields-,, th-nl thi i-,
and higher-order equations will result. Eciuation ( 138) dos -cr 1.c);
the equilibrium ocienmodes of a loaded resonlat Or i "Clui. all I th"
losses. This equation for the unstab] o-re-enat t- Ie~e ry
discussed in Appendix D and in more detailI in anotherr il ; of tis
.iuport. The normal modes of L (2) are the saeas tLhose, for ]'(I)
(since the left-hand sides of the equ-tions arr'Antm
However, since E (2) is driven by productLS of f s-ro m~ e
it is conceivable that the left-hand side is driven at ai nat nra~i
frequency. If this should happen to he the case, then our K rtkor-
bation ex:pansion will break down. The- reason is that (?)cta
a secular response which will make 1.(2) > l) r ctaci
problem those components of the right-hand side, of EO() are inc er-
porated into the equation for (1) , w.hich isi no,; lloe to av
a slowly varying am,.plitude. First the cumoe;of Iha. (138)ha'
to be found. Towards this end let,

E (r,t) =Ek()eiC k tiz+ c-e (140)

where cc stands for complex conjugate and I'k sa t irfs

ik

5. A. Yari v, unumI ic t ionir , John . ly&fnNY(1 f,7)

6. N. Krylov, N.N. Rogolituhov , T :it ro. to ni si (fehn I -1e!ni
Princeton U. Press, brinc Lon, NJ (1 94;
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- 2T+ 2ik D+ k02() 0 (141)

where

k 2 k 1 k c 2 + C9)

k 1_ -tM+iq (142)0 2 2 RO 0 k k

g() g 0 are the equilibrium gain and loss term,'s. Trhe loss• C

include medium and output-coupling losses; it is related to
o(0) by, gc ( 0) = 0O (0 ) (r)0k/k. The relationship between the

dielectric function and the medium susceptibility is given in
Appendix E. The dipole moment per molecule, qiven by
p = (E + c.c), results in a macroscopic polarization P -
Finally, since D(l) = i(O)E(l) = c0E(1) + F, we find th:at in our
simple semi-classical picture c(0) = 'O(1 + tR0:0 - i(1(0)/k).

The equation for the equilibrium gain is given by

0+ (0) (0)
V " gg= - + " s + P (143)

where V ( 0 ) is the equilibrium flow velocity of the qas, is the
collisional deactivation time of the upper state and P is the
pumping rate. The solution to Fqs. (142) and (143) constitutes
the equilibrium eigenmodes of the resonator, since th. eo ntor
boundary is included in -(0) The details are oi\en in
D. Any perturbation in the equilibrium fields can L .( ::ded in
the complete orthonormal set of eiuenfunctions- (which arc,
to exist). Hio-..-ever, since a secular rosponser  is an t ici Iato , tlht
Fourier coefficients will be assumrird to be time dependen a:',1  t il,
appropriate set of equations describing the time cvolution of the
coefficients will now be derived. That is, let

E(r,t) L 1 Uk(t)Ek ( I  (r)e (144)

and sul,:st itute this into 1'(,. (137) , keepi nI in ;0 nI t ' t ::. (t) is
slowly vary in,; and 1*k (1) t;.,t i !; fi e ' . (141). Ti , - I , t ion
Cxpvlns inn in Eqs. (138) an( (139) fhus i!; r( d"'"n to) t k,, t o
account anticipated secularity in the respon,;(, of E(2) A::; f ur
also that

-i t kt
(I (r,t) = >'. ak,(t), ( 1  (r)e(] )

L-7 .AVCI v- Iif1
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0 (rt) k W -k(t)k (r)e (146)
k

where W(1)(r) and (r) are the an')ro; niate smati al C die 1ct ri(

and loss-modulation i .;,nfunctions to be n term ned ,el -c 1>1 i-J tently. Note that in Eqs. (144) - (146) k is a si:2nat~in i .
there is no implication that the k's are the same in thk: e -
tions. Substituting Eqs. (144) - (146) into Eq. (137) yield!s,

I -iwkt+ikz (i) 2i K uk
e E k  ( r ) - -

I 32 i w t ' + k'z -i'' t+J k z
= 0 3 t2 k , k  e k l k ,,Ev k,,(I) C 'k

0i 5 'o Z bk'k ( l ) e  e (147)

5dtk' k'k

Notcr +hat the secularity-producing terms lead to slow variations
in the mode amplitudcs as expected. To pic:. out a p'artIcu aI
eigenmode on the left, multiply the left and rio;ht sdrs; bv: t"
complex conjugate of the left and integrate over the resonator

I volume and time:

t - + 2 E fdVdt exp[i(w - ,-CO,)t-i (k-k-")
3t 2w ( k  + k,,)2 ki) (i) (i)

x (,k' + " 0ak, UkE k  Ek,, k

1 2fC+ 2wk dVdt exp[i(uk-Wk -)k )t-i(k-k'-k )z]
k k' , k"

x (Wk' + to k" )j 0bkktUk k Ek * k (I (]) (148)

where the eigenieodes are normalized such that fdr (1)

I
I
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U There are several possible cases of interest:

(i) Consider first the case in which there is no dielectric3 modulation (Ek, (l) (r) - 0).

Taking the limit that :k, (the slow modaI1tion of the
gain and loss term) compared to optical frc u..§cj - is nieligibleU requires that > k . That is, the two ectromacinet c ;..aves
have the same natural (unperturbed) frequ'nry of oscillat ion.
One way this could happen would be if k" .- !, i.e. , the lasinc,
mode is "coupled" to itself by loss modulation arising from the
acoustic wave. Alternativelv, the t-: moes ma. be U: stinct,
although deccnerate in frequency; this case is treated in detail
in Section II. In the self-coupling case we obtain

9 -ic 'bk'te 2t- uc 1(bu ,fd r kkk , , (149)

with a similar equation for u,, Making the following identifica-
tionU R 2t bkU " t f 2 r Ek (1)* (1)

=l c vl b Ce d r (r) k, (r) 1.,,, (r)

results in the equation used in 'II-l with , einci the density
perturbation by the acoustic wave. The qain term can be obtained
from the polarization term as is cone in Appendi: D. The above
identification of (1,1 (1) with density fl ctuations is not unrea-
sonable since the cavity and medium lessecfor simple sy'st(ms can
be related to the quality factor of the syvstem which in turn
depends on the index of refraction. Besides the case ';v- = k" it
is also possible to consider the resonant tri plot . -k' + k" where now the two electromacvnetic modes are .)aratby the acoustic frequency. The only difference is that now the

e term in Eq. (149) is replaced by unity. The riqht-hand
side is aqain related to the density fluctuation. This is thecase of conventional amplitude modulation by a resonant triplet.

I (ii) Consider now se[parat ly the case of no cavity and medi um
loss v- riat ion C 0) hut i- nr, inelivod a dielectric 'ol ationci..' / 0. To) Lr c,( r .-tl , e ',d,.t! a si :pl e :"ede, 1 ', f ,k

V50 proceed(1 !urf h)' JI slee(
The s:,:cific modulation of the medium that is to be studied is
that due to an acoustic wave.

17. . Born, E. Wolf, Principlrps nf Optics, Perqam.)n PresN, NY (1951)
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From microscopic consid,,r. tions (see Appendix E) it
follow.s that th(- dipole moment of a molecule is given by
p eff + c. c) were 't is a fre uncy-doc IIoln t pr-oportional ty
constant and Fc.ff =E for a qas. The macroscopic polarization(8)
of the medium is then given by (for N molecules/cubic centimeter)

= Np (150)

with the dipole moment given by p = (aE + c.c) Note that :, -
both depend upon the intensity of the field. Since the secular
part of the response comes from products of first-order quantities,

using Dsec = C(1)E (I ) = 0(0RNI) - i k )Ek(1) + cc leads

to

U k W k fd 2rNk(1) (t r)k(1)*E (I)

2 kgk*OR k (ik

+ cuk" fdrgk) (tr)Ek *
1 Ek,, (1) (151)

where it was assumed that the fast acoustic exponential variation
has been extracted via the requirement that

W = Wk, + k)k" (152)

k = k' + k" (153)

and the fast transverse variation in Nk( 1) and gk ( ) is taken care
of by the electric field variations which have different transverse
mode structure

k k + k 1 (154)

where k is fixed by the acoustic-resonator g eometr . Tn the
plane wave case the spatial integrals can actually be done and
lead to

3U k i (k P k' (i) + c (i)(1 5

a i g a 2 gk' Uk" (155)

8. A. Yariv, Tntroctiction to Optical Tl:ectrnnics, Bolt, Rineh,rt,
Winston, NY (1971)
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3 k

I (i)*

Uk i ° ' c]) u (156)
3t : - "g Uk" +  c, (jk'

", : /m is the GIadstono-Dal e coefficient , s tI: a tro-•I ~sphle ric de:.sity ancld don Is com p]I ex conu'a< C,ntii..
, Nk ' ) illbe e iv-Equations for g,' Ni wi I' I bed rv in ti~ 1112:t 1 .< c)o;

The only term which can drive the (:ain c uatie: nona: t v
[that is, so t Es. (152) - (154) are satisf ie] is the flux
term. Thus, the secular part of the gain equation is

(gk1)

-_ (g1) - (157)
t9 k' go '0

where r = I + 0sand , = ccouk 2 /2 and ( / + b r
VC is the flow velocity and b, the anode-catodc di stac ) i: 1 Itotal damping of the gain term including convection and deactiva-
tion of the upper level.

U The equations describing the medium arc the continuity,
momentum and heat-transport equations,

- + V PV 0 (158)

VP
- V VV VP (159)

U- + v • v = + o P t - i- (160)

U whore c , V, P , dQ/Ut are the mass density, fluid velocity, pressure
and heat deposition rate; , is the ratio of specific heats.

Linearizing Eqs. (158) - (160) would produce th. stand..d
acoustic-wave equa tion. flowever, sinco h heat do.OS t 11n tor
Can have c ponnts at th aCoulstic frc uic,, Ii: ]1,ads o -
secular rostense in the acoustic eutio Ibhis si omrTi ], i " is
once again taken care of by lettinq the apt vitto; 1), 1'v']\
vary inq. The ]i nec rizcd acoustic-wave equaltion (for the massU density) is given by

+ 0_)( ; + V0  2 CA -2 ) (1) (2-4)- 21 (161)

507 AVC f V1 TT



w here V 0 is the transverse flow velocity and C,12 - RT in the
acoustic velozcity. The heating term hIi b Ieen inc Itud"a in antici-
pation of the secularity. The heatilng term is obtained fr a C 2

laser by conservation-of-energy argjumonts; it takes the following
form:

,0UkUk" + + .. )..)i(.kt+ik r

1 (162)

where vl/v 0 is the ratio first excited state to qround, state and
c.c stands for complex conjugate. Since P does ind ed vc rv -It
the acoustic frequency (note that use of Eas. (152) - (154) was
made) it will produce a secular response in Eq. (161). The slowly
varying piece of the acoustic wave is produced by,

(1) (1) + - ) P (163)
2C a2

where -a is Lhe convective damping of the acoustic waves, Pk' is
given by Eq. (162) and Pk' = mNk , where m is the mass.

The linear instability is obtained by assuming that one
of the electromagnetic waves has large amlitude and hence cecas
into the second electromagnetic wave and the acoustic oscillations.
Thus assuming the 0 - constant and using Eqs. (156) , (157) and
(163) leads to the determinantal equation for the instability.

I Assuming that uk,, et Pk' ? e6*t' g,,, el*t leads to,

u Uk Dor U k

2~-) k c -i, k 2 m k " -

(y90Uk 6+y 0g 0 '

0

02a 2 O U (l-y) C 2  , 0  s ) I,+

i 2 CVa  0a2

(1 64)

!AC i-IP



Setting the determinant of Fq. (164) eqiual to :<,.ro, leads to thu
polynomial equation for the instability. Defini ng

cg 0  (rk,, q 0 - ) 01 2
1  = (r - ), 2  4 pa C 2  V 0

Wk-IQq oCr -)y -l VI
4 IDa C T a~ 0 )0%

where RI Gladstone-Dale constant and ) is atmospheric density,
we obtain

(6) (6 + Yg) (6 + ya ) + a1 (6 + Ya ) - icz 2 (6 + 7g) + i6 = 0 (165)

The acoustic damping is given by 't'a Vo /b where V. is the trans-
verse gas -low velocity and b is the anode-cathode distance. The
damping in the gain equation is given by Vg Vo/b + l/i where
contains all the collisional relaxation rates.

C. NONLINEAR SATURATION

If now, it is assumed that uk does not stay constant but
decreases significantly (as energy is transferred to the other
waves), it is necessary to include an evolution equation for uk.
That is Eq. (155) must be included together with Eqs. (156),
(157), and (163). Unlike the three-wave equations of plasma
physics, which can be solved in terms of Jacobi elliptic functions,
this set of equations can only be solved numerically. Some insight
into these solutions can be obtained by examinino the conserved
quantities. Using Eqs. (155) - (157) and (163) leads to,

t(uk 2~ , ____ k ±k,
I t-Wk k", W/ W klf (cg k'u k*u k ' + c-c) (166)

This can further be reduced by using the equation for gk'"

a(jP'x 0+ kt i 2 i _+ 2) = +o kk / b/r /U + + c k_'

3 k k"k1) k" jk - 1

(167)

g-
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The convective damping has been incl uded simply by rep1acing(
Vo0 /-,X in the acoustic equation by Voib where b is the anode-
cathode spacing.

In order to understand Eq. (167) it is necessary to examine
Figure 8. During the linear-lasing staqe the second elect romaq-
netic wave is negligible and the acoustic noise ha, not made a
transition in the anode-cathode direction. Once the primary
electromagnetic wave, uk has been saturated and rec-ohes steadv
state and the acoustic noise has had time to propagate across the
anode-cathode separation, the linear regime of the instability
sets in, whereby the primary electromagnetic ,...ave feeds the
secondary electromagnetic (em) wave uj,, and the acoustic noise.
Eventually the primary em wave is totally depleted. This resultsI in the secondary em wave also dying out in one or two round trips
in the resonator because of the output coupling. However Eq. (167)
implies that the nonlinear proccss of supplying energy back to the
primary wave will not take place because of the dissipative natur2

* of the acoustic waves. The energy can be made to flow into the
secondary em wave and the acoustic wave but will not flow back to
the pump. Thus, once the pump is depleted the instability stops.
The entire process begins again, however, because u0 builds up
due to the laser properties of the medium. The acoustic wave may
rerrin into this region because of its relatively long decay time.
This feature may lead to a degradation of beam quality of pulsed
lasers, as well.

D. SUMMARY

The physical processes involved in the instability are

illustrated in Figure 9.

Consider a large-amplitude wave at frequency I0 and wave
number k0 . In the presence of a density fluctuation at frequency
w and wave number k, a second electromagnetic wave (. -

k0 - k) is excited through the nonlinear polarization. This wave
is a higher-order mode of the unstable resonator and hence could
have a higher loss rate than the fundamental mode. There fore, it
may not be excited in the absence of the density fluctuation. The
two electromagnetic waves in turn amplify the donsity fluctuation
through the heating term. In addition they excite fiuctuatiorns
in the equilibrium gain through the flux-saturation term. Th is
completes the feedback "loop. " S"ince the heat denos1tion s a
dissipative process, this int ahility is nenconservati y and tur ns
itself off. The reason for this is that o all th ny from
the primary wave (,,o, ko ) has been deposited into the secondary
electromagne tic wave and the acor s :tic wave , t h(- i.; no way\' of
returning the t'nerqy to the primary wv, as would b,, he caSk, of
ordinary conservativo nonlin',ir iT1;t,lilit P c. Bcaue; of the
additional loss of the secondary wave (hi, lie r-ordher roodr) it, too,

.AVCI V, -iLTT
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leaks out once the primary wave has decayed. The whole process
restarts because the primary wave is once again built up by the
lasing medium. The acoustic waves may remain present throu(;hout
this phase because of their relatively long damping time constant.

The equations we have derived in our differential formulation

reduce to those of Section II when the two electromagnetic modes
are degenerate in frequency, as they must.

The process of dielectric modulation was studied and also
shown to be unstable. This is a form of Brillouin scatterirg
including the effects of gain-flux oscillations.

f!
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SECTION V

U UNSTABLE RESONATORS WI T11 SATURABLE GAIN

U A. INTRODUCTION

Unstable resonators have found w dc.- us i, n
gain lasers. As early as 1965(9) it wva:; rcnircd t , t t h:a
resonators are desirable for a number of reasos.
include:

1 ) The large mode volume that can be obtained.

2) The uniformity of illumina tion (and hence en< rwy
extraction) seen by the gain medium.

3) The relative freedom (compared to staPI o r,,a onator-,,
from undesired higher-order transverse modco;.

In the realm of qeometric optics, the oort f an
unstable resonator such as the one shown in linuire 10 18
obvious: The output is a plane wave. Ioweve.r-, ,hen c -
tive effects are included, mode provort, .n;,re not oieand
the calculation is comnlicated in the extremo. The rsu rl an-

ing of unstable resonator propertie'; that ha, evolv(,i ov,er t1,.-,
past 15 years has been derived from the sc-au] ,ev 1 cu ",,ut of
ever more s;ophisticated calculation t.chin's. (1_1)" Prior
to this report, the study of unstable ]:,sonato-s had advanced

9. Siegman, A.E., Proc. IEEE 53, p. 277 (1965).

10. Fox, A., and Li, T. Bel I S%st. J ,e h. . 10, pp. 453-488.

11. Streiffer, W. , IEEE J. Quint. Elct. QE-', pp. 229-230
(April 1968).

12. Bergstein, L., Anold. Opt. 7, p. 495 (1968).

13. Chen, L. , and Fo'l;(,n, L. , JEEE J. Ouant. ElA]ect. OH-9,
pp. 1102-1113 (Nov.mr 1 973) .

14. Onil tz , .*, J. OW .,c . Am. 63, pp. 1528'-1543 (D),cl'uah.r
1973).

15. Moore, G. , and McCa rthy . , JR._,. oc. Am. 67, pp. 228-
241 (Februjry 1977).

I
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to the point where tho effects of diffraction and deterministic
intra-cavity gain distributions were understood. (15) In this
report we carry the level of understandino one step further,
and include the self-consistency problem associated with gain
saturation as found in actual lasers.

B. NOMENCLATURE AND STATEMENT OF PROBLEM

I In this section, we express the coupled diffraction and
saturated gain problem in terms of the one-dimensional strip
confocal unstable resonator, as shown in Fiqure 11. Comparable
analysis can be made using two-dimensional rectan(jular symme-r
or circular symmetry resonators, but we wish to avoid theso
additional mathematical and computational complexities here.
It should be noted that, for the case of empty (no gain) reso-
nators, the diffractive properties differ only in detail among
the several geometries.

I In the absence of either a saturable or non-uniform cain,
the optical properties of the strip resonator are described by
the well-known integral equation(16)

Xf lx) = b - Fe f exp 1 M F ef  x'
2 2+ 2 2

F eff) _2

I (168)

f(x') dx'

In this equation

f (x) = the complex optical amplitude in the plane of theI feedback mirror

A = the eigenvalue corresponding to fix)

i M = geometric manification

F eff = the so-called effective Fresnel numbor

= (a2 /X'L) ((M - 1)/2]

V = wavelength of light (not to 1,( confue(d with )

16. Weiner, M., A,):,]. r),t . 1P, I,!). 1P '.1 -Vl'i (, u le7-i ) . I,

basic reso)nator t.r m t ion i . , in . , , ii a ..p or:
but this work is t ' 0111 on 7 ' :1" to 1.: 2 t '>]2 cit ]y ill
terms of the effc tiye r( , to I ,,r -
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U 2a = feedback mirror size

= the normalized optical axis offset or tilt. F
j takes on values from 0 to 1.

Equation (168) is just a formulation of the requirement
that the optical amplitude distribution reproduce itself, to
within the constant \, after making a round trip back and forth
in the resonator. For exampile, in the 1 i mit F(<ff , ', di ffrac-u tion effects vanish and Eq. (168) takes on the form

f(x) f (%/M) (169)

U which has as a solution f (x) constant and \ 1. This iis
readily identified with the geometric optics result of a piano
wave scaled in size by a factor M every round trip, with the
output coupling seen to be

Lc  = I - (I/M) (170)

which is just the fraction of the mode not blocked by the feed-
back mirror.

In many cases of practical interest, however (e.., infra-
red lasers), a geometric descriction is not sufficient aind dif-
fraction effects must be included, even thoueih the optical
properties may be largely aeometric in character. This corre-£ sponds to solutions of the integral equation for which

1 < Fcff 1 100

1.5 7 M < 4

5 For a given combination of 1-, Fff and , thero, are sev'er-l
solutions, each with its eiiF,-nvaluao and ci,:enfunction, corre-
sponding to the several t.:ansvereo mode,- of t he rosona tar.
With the eiuenvau quaion o(,finod a : ' F>:. (1(,) , tIle
(one-dimensional) output coupli q l],(i ) :; ;ou i t ed w i t h ,ach

mode is given byIx
L (i) = 1 ... .(171)

c M

We m','' asse: .; ti,, ,'ffoct of dif f1 '1(t i(,: v ,:;',i .'': n
output coiplin<o, or oiuivlent y, V , , I' ' , rd.
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Figure 3, f rom Ref.- 13, shows suc-h a curve f or y - 2 . 9, 0,Iand Fef f betwcen 5 anid 20. An ove ral pI I i r t in o', i 5,
apparent, as well tin ienerate cro:ss.'n(u po in (e). Itf-
where two ncedes share t hoea va ilue of in -an act uti1as
such Points may cause uindesira-ble mode hooscine. A, very S 111 I a
pattern of di ffraction- induced output cons ~incar:a o a:Is
if Feff is kept constant , but the posi tion of the o)'Qi'1 ci-5()is varied. (17,18,3) Ever;o if the mack- are not a-ctil'lly ck+. 1
crate, the mag-initude of'"the out-:)tc ln i~ 1iLo
for assess inc: mode-mnediuim inter-act ion Of 'ctf Th Iis IL-Ittel ;i tl!
ation is perhaps the more likel y in an1 opol t1i d' o,-, it
can readily beo inducedl by, say, a mirror v i -it ion, or 1)y a
density perturbation, leadinq to IMNI instailities

In any realistic hiah-efficiency la-ser t ciinUbe saturated. The ef fect Of the( Orfec (Iii n !l (-7"

theoreticail curves such as depicted in 1 curo 12tr(
not been assessed, and provides the urCo r th-3the main theoretical analysis, we consid(,r onl i : a
tors (r = 0), but in Section E w e she,. 1"01. til I-c 1

behavior can be related to the aligned case

C. MLTHODOLOCY

For the present ana vs iswehv ee1eocUcombining a number of techn iques which have- not -I
before. The resul t is an iterative ocd"'>
not only the l owest I oss mode, but a]I so tieh hrUtor modes, sincultaneoucly. Even for ai hichl, -st',;ca .
convergence is obtainedl in five iteatl o 1-!;c:;1
no difficulty obtaining a soluti on in the ce

eracy.

We outline here the tecilniiwe whic c c :' 113nents of the algori thm. Howe:(ver, sinc' "'I'-
of these are in places quite intricait.-, h icI(1 rs I.1
to the original references for complett .ais

31. Initial 1 EmolTtv Resonator Ca-l cul, tit-yr

For a given set of resonator 1aartrs(, U w;t I IU ~assumced zero for the, rt,-st of t he di .:.Kn), :.V;ysi5
Cigenvalues, i andl cc res mn nc m111 ode- 1; 1, 111,- i( .I: (,.) 1s-
determined. The aycotic the'ory of jeeoto: s .(

17. Perkincs, J., i( a,;n C., Am .1,c: . t t . l, p. I<f

200 (Augcc:;t. 1 977)

U18. "lln P11'1. , 1an(1 Pr11 ct h1, M . , Opt. F I r, 7 19 6c' lr l0
(Ma r c i/ Ap 1 19 7)
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This theory can be summarized, in 1airivl ,sica1. ,.- )
as follows. The amlitude funct i on fi (x) i a.'
series of slowly modulated cylinder waves, plus a coc termi
fi as follows:

N i k r (x) i k r x)

f(x) fi(x) W + f (f W + fn : 1 1 , (x - n,, - -r (-)

5(172)

The origins of the cylindeor w-aves are succes-sively fir thesrve
virtual images of the feedback mirror ecocs (FicL-e 13), corre-
sponding to liIqht that h ns made n trips around the re soenator.Then rn is the distance from the nth virtual ima(e to tAe obser-

vation point in the feedback mirror plane. In the Fresnel

approximation, Eq. (172) becomes

1 /2 1 ik (x _- z ):n 
2

(x) - exp wf (x)

U n= 1 n 'j

(173)

ik(x+ x+eCxp Wn n n (-x) + fi W)

The origins of the cylinder waves are at the points

Wn = d(N 2 n - 1) (174a)

n aM n  (17t)

U Use of Eq. (173) in Eq. (1(8) ]>ads to a s;erice, of intcra]: v
are solved by tha motlnd of St ionlrv p~hl. (1) Ti . . ,

Feff >" 1, hut has he'-n :,1r1'&.,n tho -1i', -a O(hn h r, .1
F f f ,] . Whn this . dIn,, the mo I t i " n I11t I n as
the core. term 'Ir foard to L' o.prr.W in I I:,i othrI
reson<itor na rsscf.ara. "V final suit i I crrm Ic-: I ,lynosi Iin a i n an, r ,i:

19. Bern, M . , rind Wel > F , V. , tS noni,,; , i5(:', If'., 5tr }d1 (Percim ,n, N.w Y1r1', 1 7I), ,1.
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1 i 1/2

1 = 27Tr (2 1e f I

Nhc n I +1

exp 2 7 i Fef 1n; + exp 2 riFe f  ;n "
C f 11 ne

i:e ] for synmetric modes when n N + 1 (175)

The plus and minus signs denote symmetric and antisymmetric
modes. Here

M- (176)1 + M- n

and the original eigenvalue is found from

i l --,(177)

The lowest-loss mode corresponds to the larges value of \.
The corresponding eigenfunction is found from using

f W ,M) n ( l _ M - 2 n )
(178)

n~(x) (-2 -n (178)
(1 - M (a + N x)

and

A N+ 1 -2 -1
f.(x) - 1-p [a(l - M )]

1 2 riFeff (179)
.2 e Z

the denom inator , and since JAI = 1/ 1 1 - I fo r- th < o ,.' , 1 .,<
mode, it dominate.<; Ecj. (172) for rogion:; in<.,id,- the? hll o u o nl-

daries (x = + M~i) and represents thle (!;,omelric" 1):Irt of the
I solution. -

(o4.7 0. f;

. . .li n i II II . .. .



The number of virtual imaces, N, vwhich are needed to fix
the order of the polvnomii], can ho estimated in the follovwinq
way. (20) Conside_ r the con focal un:;tahle rosonator shown ir.
Figure 14 with a spherical wavefront. emnanating from the commonU focal point. Radiation within the angle

_ DI/
0 - / (180)

1 f2

which makes one round trip through the cavity, wi]l e:it magni-U fied to the whole mode size D. Similarly, radiation within the
small core angle

D f2 (181)
n f 2

U which makes n round trips, is magnified Mn tnm>, and also exits
with the full mode size D. [This core region is v.nere 'i (x) in
Eq. (172) arises.] If we desire the cavity to be "diffractionlimited" in the usual sense, the exiting radiation must have a
cavity angular spread of

0c  (182)
c D

U By requiring the angular spread of the core region to match that
of the whole cavity, i.e., ON Oc , we have

N 
(183)

whence

N in (8 M Feff) (184)
N = in M

In practice, it turns out to be useful to add two or thre to
N as calculated by Eq. (184) , to guarantee that N wil Ibe 1arcoe
enough. A similar formula used by ]orwitz(14) is

E In (250 F off )

In M (185)

20. Anan'cv, Y., Soy. J. Oliant. I]cct. 5, pp. 615-(17 (1975).
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Figure 14. Angular Spread of the First Iteration,. For
radiation makin(T only round trip of theIcavity, the anjular 6iv01rC11CC c -c C exceds

the output beam divergence N./D.
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2. Intensity Renormalization

The lowest-loss mode intensity di:tril~ut ion I (-)
Ifo(x,d) 2, correspondinu to )01 is normal iz . to the satur-
ated intensity, I s . To do this, we coeT.r t(. a u-emetrIc
intensity, l , using the theory of ,.,o!mtric t.-ri o rounators
with saturable ctain. (21) We then regui re that t!)", avcraee
intensity over the feedback mirror be the sam,, with and with-
out diffraction:

W 1(x) dx 1)
g

-a

This is to a certain extent heuristic and is strictly true only
in the limit Feff -) -,, but is a resonable requirement for the
range of Feff's of interest.

In the geometric theory, we begin with an a..umd fid
form in the cavity; namely, a modulated cylindric,il ave em.-
nating from the confocal point, and a modulated plane wave
exiting the laser:

ik(z + L + d) 1 ikqE = e f(z,r) - e g(r, . ) (1L{7)

(Nomenclature is defined in Figure 15. The function f(z , r) here
is similar to but not the same as the f functi(on : o' ction I.)
The boundary conditions are that the amplitudes vanish on theS mirrors:

f(O,r) L + d, (88a)
(L + d)1 / L + d

and

_ ] r\2ikL
f(d,r) dl/2 q d, a. (18 Rh)

By starting with the time-dependent wav,, equaiti(on

2 2 2 Ehc V =- - 2 c C3 t 2

21. Moore, C. , and MaCarthv, I. , . Opt .C . A'A. 7, 2 1-g 227 (February 1977).
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and neglecting all second-order dcrivatives, we obtain, using
the assumed form for E, the rate equations

G f (1 90a)

and

D g = G g (190b)9p

* The gain function, G, is assumed to saturate according to the
Rigrod relation( 2 2 ,2 3 )

G1 +Goi (191)G 0 /
+

I where Is is the saturation intensity and I is obtained from

£ I jf(zr)j 2 + 1 jq(rl)]2 (192)

The form of Eqs. (190) suggests definin.i

3 f(z,r) - fgel I(Z) (193)

Then, from the boundary conditions, Eq. (188), and noting that
M = L + d/d, we have

iH(0) = 0 (194a)

In M (1941)

I Furthermore,

(L + d - z) (L + d) 1/2 o-II(Z (

322. Rigrod, W. , .Aj~pl_. hy3 36, pp. 2487-2-l') (ui; 1975)

23. Thi., formula ;";um ; no interfor-nc(. }ot .. on forwmikl ind
backw% rd t r a,.in, w , . If 11 nt , V Iv ,)t rI t ,3 eff,.'t is t() :;hi f l , overaill.i of j;tn i 1 '. " V: . il1
aPO .t77-179G .(cemr 17 9T)d 'o. . " I. 0
pp. 1717-1711) (Docein ,,r 1979).
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Using Eqs. (192, (193) ,and (195) inl Eq. (191) Yields

G d____G 0 (196)
E2H ~ +(+ L~)&]f

Determining a solution consists of f:in(lin -a vain', o efT such
that the boundary conditions [it'. (1-i , u i : hen
Eq. (196) is intecqrated. Then Iq - r: "q is us-ed in E-q. (186)
to normalize the diffractive result.

3. Propagation Throuqh the Gain 1Eemain

The renormalized fo(Cx) is p-1 vi t r~1 thProuuh 1 20 r'o in(2
region, using simul taneous forwar d 1-n IhOa(Utio.(4
This process is illustrated in Finie 16. tenis1 ieei a po it
(x,w) in the renion betwoen mirrr; "'01 ] h A( , eeo-dlnate

measured from right to left away frien the fted acrk mirr or.

Trho "forward" part of the- prop 'ao -:t iorn'- of tlho

feedback mi r-rr, and thus; ieh ~ 1~ t t 0 1 tn' t 1"'
figure. In the Absence a:- qaill wo have, fi a' tilhe d a theory
of difflra ct ion , the comp Iex:- aiip I i t ie at -i p oint ('

-a

The expnontiai ti-i ni i., thr hnc'riu- rrlti fra2:i the(
curved foedbaick ri pr . Inl th- Fresnonl apprao:i iil-t ion FK is thle
propagaition function tlief3ned Ihy

K(x,y) - i [ 11l2 e x ( J y ) 2 (19q8)

Tile ")(''hack..'ard '' part ion i the- (-:" ri :1 ont < V (
prior tao h ittijn'i t 1- m irror) v, eoal v i *iI .. Qi t I T1)is
propaaration is e'ffected ii!sing the ~IpxCl n'le Io 'Iil
function:

24 . 1airll -01'taL ~ Ot. 1P, pp. 273O0-?1') (15
August)
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a) "Forward" Propagation

ATTENUATION -

J6071 1) "Bc:w, d Prouagat ion

Figure 16. Simuvlt,rin ous Vo rd ,l T i ,.' d P', t 1.
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UBKW (x,w) K*(x,x I ) f0 ' x, (199)

Thus it, too, propagates from right to loft. In this wav, both
waves move into the gain region in the same spatial sense.

Locally, the saturated gain is computed using, again, the

Rigrod formula:

G(x,w) 0 2 (200)
1 + j e (x ,w ) 2 2 + BIu ..... (x ,w ) 2

Of course, lieht reachinq a particular (x,w' ) must ha,-ve t rav.-s,j gain in the recion w < w i
. To account for this, we insert in

Eq. (198) a line integral term

Gex(x,w,x1 ) exp [f 'r) dJ (201)

where 9. is a vector connecting the observinq point (x,w) with
each point (xl,0) on the feedback mirror.

For the backward wave, gain becomes attenuait ion, so that

SGBKW(X,W,X) exp fG( ) d, (202)

3, used in Eq. (199). This scheme permit.s s;yst(em,tic calcula-
tion of G(x,w) in the direction of incrLasing w.

4. Modes in the Pre.sence of Gain

The analysis of Moore & mCa - a xantotic
calculation of unsttblc, resonat( r mo, , i, §unct in
cin be specified. In t r , (>:,.) v.'a.; a III t .d 11unc-
tion, hut this nc fd not L, in ,ne , ,,- , V. ,on a, o ,
we calculate it from th, od, p ttorn it >1]f

I To include thco offictrq of lain in tlro :;na r a':, ':;:

the eigenv illue polynomial [J q. W175)] i.; modifi,,i t,) y .

I C
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U

3 1=-> 1 ei.) /2 Nl i'()ep[2 1F ~ *) -11/2
o fl-I

-e-T e, (2 1 f p-i n .1/2 - (203)

u for symmetric modes when n =j + I

The new functions, 7 n (x), are integrat ed:ain e

similar to Eqs. (201) and (202) , except thaIt the "ath o t
gration forms n round trips thromlh the cavity, start i !.,at th.3 mirror edge (x - a) and terminating at the point x. S, cif a ] .,

p I

3I (x) e :p L G ') ,w' d"

(204;)

+ f G[X w' I - 2nj

20 0

where the intojration paths are alone, r, 'it,

x 1I(2') - M-n [n + C' 1-1 1 - ",, - -

I and
-n

imalqos of the f('( rlh Ick Ii11(,1 ti

Tho, am it . f
Eq. (172) , :oi'.', . "t(

(x) are to 1,' m,1lt itl i,,1(

AVCO



I n this anraI vs is ,we al1way s a ssuLi:!e tha t thIe I owr.%( 7t,- I Cii! mod
d et(-rim ine t he i rit(-n s i tv i n the c ca~ nl I- , i ofn SO thit I' unic-
tions have an irtIrIlicit i= 0 subsoriot.

5. Iteration to ConverIClence

The upda-ted f (::) amnli tude di stributien is r:a dno
the qinj reqion as, in step 3, and a new; f ( :: ) ca oI aI!-t.-,_ .< i in
step 4. This process is reneated until c~''roc' otain~
by which we mea-n that the change in theloeto; ipnaIu

Xis less than somne values

AA < 8(206)

Since \o 1 , this is the same ais having the fractional chancpe
into X0 be less than 8

For a GOT, of 5 (i.(-. , round trip unsa turated! jintensity
plain is e 1 0) , a converaoence criteri on of '= 0. 00)2roi
Z 5 iterations; for 0.0005, the number is eiih to tn .
There anoea r to be t ,-o re roCn s wh.%, v '' o5ra
this aloTorithma. Fir st, t:..- satura-ltd cancalculaltion :>-
hcirns ,;ith ain fc (: :) deiv-c'r from an 5-, 1I roatr Ci ic 1 a-
t ioz, . T hu s in aI- sen)s e tr2ea1)ts ni aI1;1C7.; aI r t -1 t i (:-. :
second., rcea sn i is t-P t t i -, t c Ira- t od pa i n I on t on C F, . ,an

f a ir Iy smooth, !becauseC theo'; intooIratce oit fi nesc a,--le e-:1Ui
(w-cl i rot i on) ia in r i pill and (do niot chanc by much Ltc
iterations .

It must ho. e1h:: I hat the trtvea oi
sented in tliis :an-r V2:oa-n i, f~C~
i t Cra t~o ~ o n 11!,- t o i: a1It0 1 -t, er S t 1) c ' 1
gain. (25) In thel( Foe ' 1)e the o i i -:~11'l

itself is itrtd to r , t rt inrl :i P
initial mode- slvv'............' i ,i ' n
schem(es:, the oi ", I n". I tot1 locuO'i''--

pass is cont iinedC in tnw n;'m(r ic -ir h 'i

thle caIvity, of nco.P Ilt1  .ia :o "0 '

as roundroff error, ind ~-''l0
tion Ic;'- tU oesli f r :I Inti:; , 1" 1.':u

copy, of f 1? u e;h h oei' rreo'o:':>........

neff, usully a round11 11ram by and certai 1v I i; t 11,n10

25. -in ' d IIIi. , , '74 -1 lI
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In contrast, the. rutho~d presented he nee(d ol nv i a s t ,
eiclenvalue 0 from itcrlat ion to iteration. hurt hrruore , a;into
the P (x) functions art 5,ensitive only to th:e ]ag<t;ttial
variatio, _ in gain, a lii hly accurate propagation throucgh tho
gain region is not essential.

D. RESULTS

The basic purpose of this calculation is to asrless the
effect of qai n saturation on well-known diffractive 1:l( L--ro-
erties. To this end, we consider the particularly illustrative3case of a resonator with

M =2.9

eff 8.892, 9.390, and 9.863

Referrinq aaain to Ficiure 12 these Fef f values correspond to
(in }Iorwitz's terminolocv) a so-called crossing point , a point
of maximum mode separation, and a cusping point, respectively.

To choose apropriate small-sitmnal cains, we consider thj
steady-state oscillation condition for a strip resonator in the

ceo m t r i c l i m i t : 2 G L / [ 1 + ( / 1 ) l

1 0 1 (207)

or

G°L 1I + (I/Is)] In M (208)

we will consider the three regimes of interest:

I/I <<s

/ s :I/ 1

s >> 1

A very low valutm of I/M is th same as the; n (''-re,' mater ci]-
culjaLion ind i sala] mi iu as a 1a tor e -- nL. 0 .e: O
caS C. As aTn exanirnlr(- of the intermr'-dit, case we ak
In P = 1.065, so that 1/1- = 1. For I/1 s  : 1, we hive ahea,

I GOT, 5.0.

r AVCOi



A cc);wr !'CC n ex of t h.- ,-: r it !I w ', I r -I-
f rust ra t(d I -v t.I,, a'17i tv of C- L: I- t t'd i
since other -tlrC: :i. .~c;r:~xe
results, arc 1-,v jil~ib1( 1 atl c~oiiitior u in u a- t t _C

3 ~of this sec tot en .- i 1~ - ~ C >' ' 1 CC 0

w it h reos u It l t' b, 'ix i i CI 2t 6 .,
a Fox-Li st, p r C, I ()L I' c J t'- i c' I
s a tuLrable1 a A i n ' r h i' i0' 1

the arinl it'2 cillc', t ''

fed and sa-turn att 1 . t Pi110 ) i> !I I'( 1 '

S ty CIOI:111 (i "o acco 'lt ()I-12 7 > '0 l, '')

prOjpaqa C7,d bazck to t)C 1redbc i rror .Tereat- a2-U eters are:

M 2 2.5

3F of 0. 64

G GL 4.583

,,rthis valu 00of Fc ~ f theI asy:to iC) I rh 2 C j~ I~. I j
o f 1)r o ,en va 1 . id t .i t Ir ,C Reresc> onc, :..is
e I qenvflV~ue but Only v nte Si 5t1t02 I -'(;7 cr:Istr
of their results with ours must ofneertx exoat5C

u lative.

FiqTure 17 compares har re rsom t ~or r '''>_ 1- S ''

gives a clue1c as to he;;. the ave'tC t>''n
low Fc~f :the f7ine Scale- deta!iI is nor' n 04> n

J s ha siica -1 1ly t he ae Thec 1 i teat 1c %CL '! > '
(Figiure 18). It will be noted tll'l 1i -1 J, I
in the loc'ation of the side ma c1 as c aI 1
occur a t s I i gh t 1' h1i ("hCer valr I in ,Ir f> 't t
i S due ( to an1 s iCJ'sI ni> (7' L1''c c!d I- : I cf
iajt-ing thr>- pfrrrCt %C, f('-> 1 nel i 1'2c>> tK dl1)'K
q qrat Jion s c I i r ei ! irc s I wvvS ci I (~i TIit I,1 Cl > I t , K t
feedback mirror ends.

For t hc ,,rinit-'i il cl (,il >r>

IS i: 1, m t itil t,1 t he I ti id t~i i i I in 1-

26 . PC rtrdl 1) . In a d Cl I t()r , A. ,1 pid I
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(1 1.0- I.0-

z
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0.6- 0.6 -

0.4 0.4-

Z 0.2 - 0.2
Lii

0 0U0 I I 0 I L
0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5

SJG67 (a) x/a (b) X/o

Figure 17. Emptv Resonator Modes as Calculate (, Iv

and Choester and (b) LV Olir ATai,. li-re =2.5

and F'ff -- P.64. Even tu:h ricth.1 ( ) is
hr aad] its ran(To of vi,..Jl tv t areos',t

with, an (e-Xact calculation i.s; qui te (e

v
U1

I

I
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I I

I oL1.0 -

Cl
I hI I

z
D 0.8 0.8-

I>-.

0.6 0.6-

0.4- 0.4

Z 0.2- 0.2--

1t I 10 I

0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5
xla x/

I J6)CG

~~~Figure' 18. Sani(, Clculcit iou] os l:]iturO 8 xceuTt Stt t. Th]O GaiJ

with G L = 1.53 Near the Primar-Y Mirror
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Re sul) ts f or IC, f- 8 .892 and( IJ - 1.0 5 1  ,hoA; i
Ficiures 19 throucih 24. Fiqures 19 -indI 20 she': ir'an]
phase "or the first pasa , I . e.*, bc tore n''. i tari in ,
but after renorrnalization . The uni ts of sntr' i,] (-' o

that Is 1 . The results; after 5 pso-s appea diIn I icirc ( 21
through 23. The first depicts 70:( ) for var ,ous n. A! rn
increases, the curves approach a 11 utinq form. As o'a ''nir
expect, thc 11 (x ) have ma xama and minm- io nvr 17 v r c- -lt e Jtr
those seen inn the intensity plot. In sict ion of1 the, a o in C
saturated intensity profiles sow thait the fine scale diff-a
tion features are very nearly the sane, in both ca ses, ththe overall envelope of the Intensity is; m ade m-orel Un: o
note that it would be hard to claim thiL the di 12 jC-j 0fa _-,' ''
ponont. of thle pattern is exactly 1-'rrse y ca in soItr )--on3 iqure 15 depicts the saturated- gainp in the rcsonlator. T"C
optical axis coordinaite is in pe-:rceritarr(e of w/L; i.e., 0 is the
feedback mirror location and 100 the primairy mirror. The Clain
scole is in units of gain per optical ax -is i ncrem~ent .Thus tliu
unsaturated gain is seen to be 1.065/50 -0.02.

Figures 25 through 28 are for F~ff = 8,81Q 1),u ith C-T,
increased to 5.0. The most noticeable of'(et 0 r then mi;C

qanis that the very small am-,ount of- "stray~' 'ci
fho geometric mode s ize beco-,mes s is-ni r 1 iiln'1., I' m 1 i ol. S 1'v-r(

reldevices often have scralPer anerts u *" fi
c lude such radiation, its a.p) rnc ion r 'en :

is probably not imp'ortant. One can al 0, di;ceirn th:-t t i'
of intensity excursions; from a mean vali-" has c stil1iirt 1 ',

flattened. Interestinoly enough, the pha'so profimlos are noarm"
identical among the three cases.

Figures 29 throuqh 38 depict. re ;Ult for ~efc -7 9. 39, arid
those for Feff =9.863 are shown in IF: or-s 39) t hreur1in 48. It
will be seen that the same qualitative oboseivations can he ma-de
for these cases as well.

The pre~ceding plots do not hint ltthe dra!matic e ffr ct of,
ga in saturation on i enaIr ,arid V' eoutput- ]or1 ' In
Figiure 49 a portion of the empty cay:t-, ' IOL o-f Ficuru 12 2
reproduced for Feff bet--ween 8.5 aidl 10.5~, alone it

dlegeneracy at F1eff 8.R92 is lift-d, fo'i r theI 'xaw
o)f G01 1.06 corr rond n i to I / I dlu ito''
closeoly r~ae nevl irFxr- f r is,.U the lecgeliera1-cy is; truly Ii ftfd, aid~ rid, Vut 1.edto i:
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In a qualitative sense, saturable gain seem:s to produce
an effect not unlike that of mirrors with rounded edq c(27) or
tapered refIectivity, (28) which reduce the influe2nce of diffrac-
tion on mode properties. This is in spite of the fact that, as
we have seen, the intensity profiles themselves are not really
smoothed on a fine scale.

Horwitz has pointed out that empty resonator mode decen-
eracy occurs for Feff's less that some critical value, with
that critical Feff increasing quite rapidly as r. approaches 1.
In other words, the propensity for mode degeneracy is emphasized
for low Feff and low M. We hypothesize that for each value of
Feff and M corresponding to a mode degeneracv, there is also a
critical GeL which will lift that degeneracy. Though we have
not explored this thesis exhaustively, we have performed a num-
ber of further calculations using GeL = 2. For M = 2.9 there
turn out to be no degeneracies for Feff " 2. When M is reduced
to 2.0, degenerate mode behavior is suppressed for Feff ., 13.
For the empty resonator case, the corresponding critical Feff's
are 17 and 43, respectively.

This result is of considerable importance for device
design, as it frees Feff in many cases of interest from being
constrained to half-integer values, and, by inference, permits
a more relaxed view of resonator alignment tolerances.

In light of the present results, one is tempted to specu-
late how the mode structure of circular mirror resonators would
be affected by gain saturation. For such resonators, it has
been shown that, in the absence of gain, the in-phase diffrac-
tive contribution from the mirror perimeter leads to strong
mode degeneracy, persisting well into what might be thought of
as the regime of geometric optics. (29) It is certainly not
intuitive whether gain saturation could be expected to lift such
a strong degeneracy. Clearly this is an area which warrants
further study.

E. IMPLICATIONS FOR MMI

In an empty resonator, the peak-to-peak excursions in
the value of the . eicenvalue are, in the rocion where mode
degeneracy exists, about equal to the eometric optics limit
symmetric mode separation. (See Ficiure 12 or the fiouros of
Refs. 14 and 16.) Since as Foff - ' , 'C - 1 and 1 - I/M..

This amounts to a fractional variation in the output couplinq of

27. Santana, C., and Felsen, L., Apl . O/t. 17, pp. 2239-2243
(15 July 1978).

28. McAl]ister, G., et al., lEF J. Quait. lect. QY:-10,
pp. 346-35 (March 1974).

29. Butts, R., and Avi-onis, P., J. O ft.. .oc. Am. 6P,, pp. 107.-
1078 (August 1978).
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AL 2 2
c 0 1 2 AX (209)

L - M - 1 -M - 1

which, for M - 2.9 is about 25%. (30) If saturable gain effects
are included, on the other hand this variation is clearly cut
at least in half, depending on the value of GoL.

Even though these results are derived for varying Feff
with c = 0, we now present an argument that they apply equally
well to the varying-c case, with Feff constant, because the
diffractive processes involved are essentially the same. (31)
Consider the tilted resonator shown in Figure 50, with
E = CO # 0. We want to consider two effective Fresnel numbers,
derived from the portion of the resonator on either side of the
optical axis:

L_ (1) _(0) (i+ 2
FM = F( (1 + C) 2(210a)eff eff

(2) F( 0 ) (210b)eff eff (1

if E is small compared to unity, then

(1) (0)
eff eff (1 + 2) (211a)

F (2) F - 2c) (211b)
eff eff (1

Thus as c increases from zero, the two half-reson-tor Fresnel
numbers move in opposite directions away from F(f. In parti-
cular, the output couplings associated with each half-resonator
follow the usual periodic curves, as indicated in Fiqure 51, so
that when 2 F inteer and F ( 2 ) are each an
integer away from Fff eff ef

30. The observation that the next-to-lowest-loss ci enva] ie has
a geometric opti'cs asymptote of - M0 " 2 5 has not ben noted
Sreviously, but is apparent from a close e:amination of the
X tvs Feff plots.

31. A more rigorous exposition of the contrilh-tinf diffractive
effects of the two odges can he found in C. Sant ana and
L. Felsen, Apnl . Opt. 17, .p. 23, 12-2357 (1 Auaust )
Curiously enough, thait paper coi.ider'. a fi xd norlizro tilt
i () with varying Fell, hut does n,)t take up1 tho comp,]emont -

ary case, although the formalism for doinq so is present.

w
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As justification for this argument, Piqure 52 ;hov.s -i

empty-resonator calculation of IJI vs tilt in units of 2 F.,(,Y

for F(01 = 9.378 and m = 2.9. The validity of thi. way of loop-
ing at tilted resonators can In!o be dicredfo a :a ":tion of the mode patterns themselves. In Figure 53 we comoare
an exact calculation of 9o3 M i 9e 2 c Ff f  exam ith

a composite formed by the left half of a mode pattcrn for F =
8.3, M = 1.9, 0 juxtaposed with the rioht half of a modf

pattern for F(O = 10.3, M = 1.9, c = 0. The resemblance is
quite closed indeed.N
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SECTION Vi

STABILITY ANALYSIS OF A SUPERSONIC CHIEMiCAL LASER

A. INTRODUCTION

The objective of this study is to develop an analytic medt]
of the stability characteristics of a supersonic laser; in parti-
cular that of a chemical laser. The flowfield and optical inho:-2o-
geneity of the chemical laser make it an extremely difficult
problem to analyze, and it becomes necessary to simplify the ]iasir
characteristics in order to obtain a first-order model of mode-
medium interaction inside the cavity.

The chemical laser generically consists of an array of flo-
nozzles from which alternate layers of fuel and oxidizer arc
ejected (Figure 54). This leads to a series of mi::ing and reac-
tion zones across the laser cavity. The subsonic laser, as
described previously, can couple to transverse acoustic waves and
result in instability. The supersonic laser will generally not
have such a mechanism, as the lateral transit time, D/cs, is
much longer than the axial flow time 1/u, such that acoustic dis-
turbances will be swept out of the cavity (see the glossary of
terms at the end of this section). For the purposes of this work
the flowfield is treated as being one dimensional, and therefore
any coupling of disturbances in the flowfield to the lasing will
be primarily axial in form. This ignores the possible instability
mechanisms introduced by the series of planar mi.xino 1ayers acting
as diffraction gratings or prisms which could then interact with
the laser flux. This mechanism is considered to be outside the
scope of the present analysis.

B. MODEL ASSUMPTIONS

As stated above, our model treats the laser as if it has
a one-dimensional flowfieid. This is ohxviously not true, but it
leads to an overall simplification of the problcm that may none-
theless be reasonably valid. The consequence of m ixin is to
reduce the overall rate of chemical reaction in the laser. Thus,
a reaction of the form

k f
A + B -f C

is described by

dX
d = kf XAX

where X denotes mas;s frartion, and is gas density.

Oaf .:~~AVC;Q [7VJ JIf
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Under turbulent mixinq conditions the I ocal values of the
- concentrations [A] and [B] may vary substalntia)]y with time, an,l

their product more so. Although the dynamics ot the mixinq pro-
cess are very complicated, and many ,.orkers have invest ig:ated

d such flowfields, it would appear feasible to use a siml]e model
to estimate the reaction rates for a quasi one-dimensional treat-
ment. In the model, the concentrations XA, XB of species A and
B (averaged over a plane normal to the flow direction) are givenIby their mass-averaged Clow rates and an effective reaction rate
as follows:

dx

where X is a mixing parameter which is typically much less than
unity, and kfX is the effective reaction rate. The rate of
disappearance of fuel/oxidizer species can be related to a lasing
medium length in the flow direction. Thus for the C7 laser, with
the D2 concentration significantly greater than F2, we can write

XF = X exp (-kfp.X t)
o XD2,o

.h.ere XFo is the initial fluorine concentration. Thus, we have
an e-folding time for disappearance of fuel given by

T1
kfP XD 2, 0

The convective distance Z traversed during this time is

thus given by

. = UT

where u is the convective gas velocity. For a given mixing rate
we can thus relate the length of the lasing mecium in the flowU direction to the kinetic rate and the flow velocity, such that

u
k A kf.9.Pf O

In the following we denote the effective reaction rate by
kf = kfX.

A chemically pumped Dr laser exhibits7 multi line operation
uch that laser action can occur on an many as thro vibrationil

transitions and a total of 15-20 vibrational-rotational lines. (32)

32. Gross, R .W.F. and Spencer, D.J., "CW lfydroqcn-hIlide lasrs,
Handbook of Chvmic,il Ta:nr,, R.W.1 . Gross and J. .. Bott, ed.,
Wiley- In tCrsci 01nce, Ne.w York, NY, 1976, Chapter 4.
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In order to accurately model such a system, the time evolution
of all lasing states and the flux for each lasing transition
should be followed. This leads to a system of approximaitely
20-30 coupled differential equations which must be integrated
numerically. Such a large set of equations is too cumbersoe:1" toI be of use for the present application; therefore, simplifying
assumptions must be made in order to provide a manageable kine-
tics scheme.

The first assumption that we make is that three vibrational
levels are sufficient to model the behavior of the lasing species.
These levels are the upper lasing level, DFu, the lower lasing
level, DFl, and the vibrational ground state, DFg. We assume
each level is in rotational thermal equilibrium.

In order to model the lasing action in the system, it is
assumed that the multiline operation of the DF laser can be de-
scribed by a single transition from DFu to DFI. Implicit in this
assumption is the additional assumption that no lasing occurs to
the ground state of DF. This allows us to use a steady-state
approximation for describing the unperturbed lasing medium, since,
with this assumption, the ground state of DF, whose population
increases with time, is decoupled from the remaining kinetic
equations. Since only - 20% of the laser enerqy in a DF laser
arises from the v = 1 - v = 0 transition, (32,33) this assumption
is not unreasonable.

The reactions necessary to describe the DF laser are asI follows:

(i)Formation: kF

F + D2  u DF +D

kF

+ DF + D

S No ground-state DF is formed by this reaction.

(ii) Deactivation:
SkD

DF + M _i DY + M

u kD 1

DF 1 + M - DF + M

33. "NAChProiram F'inia 1 R1ort" (U), I,TM-)92, TRW, July R, 1976.
Classi fied: CONFIDENT IAl.
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M is the combined dei sity of DF, )2, D and F; deactivation
by the carrier gas is assumed negligible.

(iii) Lasing:

g
DF + hv -* DF 1 + 2 hNo

Three-body recombination is assumed neglibible and only
single-quantum deactivations are considered. Estimates for the
formation and deactivation-raite constants wore obtained from the
reconmmended values of Coh(,(34) by as;sumin(i that the D2/F ratdo
was 2-3 and 20-30'. of the F atonis were reacted in the lasin(i
region. Our estimated rate constants and the enthalpies for the

various reactions are listed in Table 1.

One more quantity is necessary to model the behavior of
the lasing medium and that is the gain per unit length, which
can be written

g - asAN
S v13

where cs is the stimulated emission cross section and ~' is
the population inversion for the v,j-1 - v-l,j transition.
Writing this ecquation in terms of the species discussed above
yiilds

g = ([DFu] - C[DF 1])

where the brackets denote species concentration and o is the
product of the stimulated emission cross section and the frac-
tion of the total DFu population which is in the lasing rotation-
al state. For a P-branch transition, = exp (-2J!Q) , where Q
is the rotational partition function. Our estimatd values for
a and 0, obtained using the spectroscopic d-ta contained in Ref.
35, also are contained in Table 1.

Using the model discussed above, the + Jme evolution of the
chemical species and laser flux in a cw DY laser is described
by the following equations:

34. Cohen, "A Brief Reviow of Pato ('ceffici,nt:; for React ions
in the D2-F 2 Chemical System," TR-0074(4530)-9, Aerospace
Corp., January 1974.

35. Emanucl, G., "Num,,rical Model jnqi of Chcmical lers,
Handbook of Chemical Lasers, op. cit. , Chapter 8.

AVC0 vi i



TABLE 1. CONSTANTS FOR SIMPLIFIED DE MODEL

Constant Best Estimate Probable Range Heat of Ix.eaction

k Fu 8.3 x 10- cm /sec 5.9x101- 1.2x101  -7.3 kcal/rnole

kl 9.4 x 10 13cm 3/sec 6.6x10- 1.3x10 1 2  -23.4 kcal/i,,,ole

k Du 1.5 x 10-1 cm 3/sec 3.Oxl0 13_4.5x10-1 2  -8.0 kcal/mole

k D1 8.6 x 10- 3 cm 3/sec 1.7x10 1 3 -2.6x10 1 2  -8.3 kcal/rnole

5.0 x 10 17cm 2  2.5xlc-1 8 -2.5xl 1 6 ---

0 0.5 0.4 - 0.6---
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d[DF u ] = kF [F] [D 2 ] - [F] [] -I- (Du] - O[DFI)

d t u u

B•d [DF l I] 1
d adt - kF [F] [D2 ] + kD [DFu] M] - kD [DF I ]  4- + (mDFu]- [DF 1 ])

dt 
u

iD 9= kD [DFI] [Ml]
dt 1

dtI
dt ca ( DF ] -[D 1

where c is the speed of light, hv is the laser photon cnergy,
and is the intracavity flux.

C. ANALYTIC MODEL

The laser cavity may be described by a set of one-dimension'll
flow equations plus gain and flux equation. The flowfi(]d is
assumed to be inviscid. Thus the continuity equations are:

Continuity + (Pu) =. 0 (212)
t 3x

Momentum p - + Pu = - (213)

Energy D1 = +KI AF + K All rX1 2 Xv + KD AlD (nXu (21,1)

DL u u l 1  2 F 1 u

+ KD AlD PXm X1

where

D + u
DAt 1 t C vk-

io7'VOf 1i4



In addition, the gases arc, assumed perfect (J]vilII(

p = pR T (215)
g

The reacting species may be represented by the three DF
states to give the species continuity equations

DX C
Upper State Dt P= K pX X X - -- (X -D 26

Lower State DX K DX X + K PX X + n~ (X -Cx) (217)
Dt F1F H 2  D 'flnu hx' u 1

-K D X X

m

DX
Ground State 9- (21 F,)

Dt D 1 PXmlX

The l asing may bc, described by tlhe f 1 ux co -1 i no ecult ion
described in Section II and the gain equaition, such that

lc

Flux - 2L [ fa R j'dx +. , l (219)

Gain g= (X - Ox (220)

b I The magnitudes of the coefficients in Eq. (219) are qiven

R PATM

p = 1.0

The-;e reqations full ey b r et ed'. flow t th DF7 cvj
For the psof a it nii i t' in

he per tat u _ t l f I ow rm a st I t i , (n. T1
re -w ri t in (I cch viir jab e) as, 0f th I s, um () I :;' t it. '11)i a f 1l
uating part (i.o. , u u + u ) we can hI I l ("'ll
tions from-, the v( I * i i f*ii (:i r I t I li !i IlI,'it I;,
lawr tatet - KF For t+ i; ,i. ( ku - .i
to conssidnr the be'r dsreb t e ' c. ti

variabl-es tobeti y

decie i \e'i I at



exception to this case; tho ground state mass fraction obviousl)'
increases with time whereas the other equations have both source
and sink terms. The set of perturbation equations becom-es:

jContinuity
- a L0 I + P 1- 0 (221)

Momentum

- u _ - -O (222)

Energy

U p' DT'_ I
- ax -- p K AH u + KE. AHFI ] {XH +-(  o Fg ui

PCPCP FU 1 U F F 1 0- - 0

[K All +- K "A  x o + x (Xu+ x x)}x + + X )
C F F F 1  H 2 F u 1 c u~
p u U 1 - 0 0U

+ ! [K Al + K AlIXmt Xu + (xi + P' (Ra+ XI

C p U U DI

(223)

where X11 o and Xpo are the initial mass fractions of ox:idizer and
fuel respectively.

State

S 2
p' =PR T ' (224)

S I VCD ( v' 1 4



Spcic CS

Upper

DX'
u X 2 4 K R M)XF -(X + x+ x ))Do

Dt F(XH 0 X1  9 F0

-KF P~x (X + R~ +u R))(X' + 1+X, (225)
Fu H 0 F0-

DX'1

Dt

Lower

DX' 1 K

Dt Fl1CXH -1 2 x u 1 x g)F 0- 1Xu

EF P(XH+ (X +1 x~ X+ x ) Cx' + X' + X1

+ K D (X u+X )p' + K D p X m X' u (226)
U u

+~~~ ~ ~ Cxu 0 1) x

K KD X mx I)P'- K D () X,

Ground

DX 9 D [x* . n + >x p <'- u U (227)
Dt 1 i ml in

Gain

(X C- x )'+ X' Ox .X 4 T'] (228)

DF

*AVCO f 1 VTT



--JFluxd
Flu 

_c [f/xCL RP2dx + fxctigtdx
]  (229)i t 2L R 0

As we are considering supersonic flow, we need to only con-
sider the flowfield downstream of the nozzle hank; thus a Laplace
Transform treatment appears tractable. We apply a double trans-
form in both space and time; i.e.,

1 oo-st kx
f(sk) e e f(t,x)dxdt

0 0

This produces a set of linear equations from the above
partial differential ones. Thus Eqs. (221)-(229) give

Continuity (s + uk) p + P ku = 0 (230)

Momentum p(s + uk)u + kp 0 (231)

Energy

-{[K 6HF + K Fl M1 {x + +--M (X + x +X )
F I U O1

+ (K All + K AlI + X P
D D D D U inmc

U UKFI 1F 1 p

+f [gu A l u + K {ll o + X 
- (R + x+ X)}-[K +K All ]X

FJ F , u 1 9 D 1) D D) in

x {x + xL (232)

+ (s + uk)T -ku/c p p

11 -

I + ---[KF uZ1F + KF A l ]H 0 + X1., -(Xu X4 Xg) }
c 

gM
3 = 0

- (3/:vc vv



~~State 
'

c2
s p + p R T - p 0 (233)

9

Species

Upper
State

-K F o (x - I(XU42 X1+ X) cxF (Xu+ X1 + X

+[ (s+uk) + K (x + 1 o p +
F F 2 -o U 1 g u

0 0
(234)

+[(s+uk) + K " (x + 1 F0-(X u + X + X ))1X

I - - I
+< F (xH +2 XF -(u+ g 1+ xg))Xg

u 0 0

Lower
State

[KF x 1 1- x + x - (u + 1 +x ))-4- 'D XM Xu- --
1 PH 0 2+(Xu + X g F (X+ X+ + x Tx

F F2X 1 0i uD u m u

1(23

- --
))X-- uX,,

+ [YKF  ( + x -X u 4- X +X + (s+1 + + K1) ; 1

2 u0 u 1~1 "

o X- OI) ¢̂(2j

hv;

(X ± X -X+ X4- )) ( + +

Ground
S t a t

4 (s2 ul. ) V x - K X c> u' k(v )N 0.(26

1 1

CIOO

3; -AC VI



F
Ga in

_ _ [ ( - + 3 - r _] = 0 (23 )

Flux 
11F

2L R + q/ 0 (238)

E I,]i inI n( u f rom Eqs. (230) anId (231) and ; from Iyq
(237) and (238) we obtain

Con tin ui2tv- tum

(s + uk) p - k = 0 (239)

Gain-F lux

C-2L [ R +  C4 I (u- XI1) ] +  -L I" X u (4

2L R ~l 2(240)

- .c y "- ^ - c C eI X l: ii"

2 y L C' I '-j Xl + I T
T

where /MDF

The seven equations in variables, p, T, X, , X, X 1 1 Xc"
can be written in ni.trix form

[A] [x] 0 (241)i
S
U
St
S

... .... IIAIV.. .. .C O,(.... . .. .V .. . . . .. ... . .. .... . -



Thus we have- TransfomTcd E!LuaLtiofls

- 2 0 0 0 0 2

c 4 1  420 4 4  (,+ur) <46 :47 Xl

cx51 c52 c53 54+ (su ) 55 0 c57 T,

l61C 62+ (s+uk) CL64+ (s+uk) 0 0 6 p'

07 0 s2uk0 0 Xuk(s-uk) X

(242)

where

2
cCtl - , l = R R , Cl-

y 15 9 16

c 2 1  2L R I 2 2  2L Cl1Q

1D , i + IA- )Y, . X x + ( \+ +
C4 1  c ~F F F 1~ L 11 0 u 1 Fg 0 ~u '1

+ [K 1)A! D + l 3 All D +X- X- X x
u C 1  [ ' I

AVDtI L



p4  Al FI~~ + KI +1 (+u

4 44 cP u u ~1 '1 0

S u + D1 M11)l

-Ky. + -x, -tx+ x + F F FU46 T)c47 2~ 1 0 -u 1 Ci u

51[U 1 ( 0 (Xu 1 9 F umU

C-(Y + 1X + + g < R X m, 1
U5 2  F H0 X 0- 0 m l

53 )i

Pi K (I+( + K X
14 F 0 XF0 D m

CL gA m
55 hv

57 F I H l 2 XF a (

6 11 0 0 F

a6 1  -K p (X
1 1  

+ ux (X +q s (x +
6 2  6 4  6 7  Kr (N 0 1 u

-L1 K 1)1x rX., CY74 k D IxMP

. AVCD UV~ If V;F



The stability of the system can be (,xmine]d in terms of tilt
characteristic equation derived from Eq. (241) ; i.e.

det[A] = 0 (243)

An analysis stability of the system is obtained from the
Routh criterion for Eq. (243). (36)

The characteristic equation may be obtained from Eq. (242).
After tedious algebra this reduces to7 a65 436

a7s7+ aS+ as5 + 1 4 a +a3 S a 2 as2 4- a = 0 (244)

where

S7 A6

a 6 = 6nA 6 + A 5

a 5 = 15n 2A6 + STIA 5 + A4 + B5

a4 = 2 0 j3 A6 + 10T2 A5 + 4IA 4 + A3 + 5nB 5 + B 4

a3  15r 4 A6  + i0 
3A5  + 6rIA 4  + 3rjA3  + A2  4- I0 2 B5 + 4tB 4  + B3

a 2 =615 A6 + 51j4 A 5 + 4Ti3A 4 + 3T2 A 3 + 2nA 2 - A1 + lon3B5

+ 6 n2B4 + 3nB3 + B2

a, = n6 A6 + n 5A5 + 4 A 4 + n 3A 3 + r12A a + A 4- Aa ]1 + 0

+ 514 B5  + 43B 4 + 312 B3  + +

a0 = B5 + B 4 + B 3 +  0+ rB1 + B0

36. DiStefano , J.J. , St ubbcr-vl, A.R. , Wil]l ims, I.J. , "Feedback
and Control Systems," McGraw-Hill (1967)
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II

4 and

A 6 = -a 16ki

A5 =a 1 5a 4 6k 2i -a 16cc6 2 kn 4a 1 6 Ca5 2  c 54)kn

SB5 a 1 6 53 (c22 - at24)

A4= - l - t15 4 6 (a 5 2 - a5 4)k n +cx1 6 a6 2 (a5 2 - 54 kr-

4 +a 16a 5 7 74kr

S B4 a 53(c22 - a2 4 ) [-a15 a 6k + a 6 2]

A A3 = a 1lk 3 r[I (a 52 - a54 )-c 6 2]+ 15A 4 6ct 57 7 4k
2

+A c 15 a47a71k - C 1 5a 4 1 ,k
3 +a 1 6 x57 c6 2C%7 4kI

-a 1 6a 4 7a 5 5a7 4
k T -ct1 6 a52a 6 2a 7 4 kil

d2
1B3 = i 5 3 (a2 2 -a 2 4)k

2 f + 1546 53 62 22 24

a 1 6 ( 2 5a4 7a 5 3 c7 4 19 a 16 C22 5 3a6 2 7 4 )

137 
AVCWv-fl-A
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A2 = Ol11t 6 2 (cx5 2 - cc5 4 )k 3f + a 5 7 7 4 k k3

+O15 O46 a57 62 74 k2 + O15 47 62 71k

- a 15CL4 7ca 7 1 ( a 52 - c 5 4 )k3 + c 1 5 ct 4 7 c 7 1 k kr - Ct1 5cx4 2 6 2 k 

+a15 (a4 1 O52 - 4 1ca5 4 )k 3 + a 1 5 c 4 6 0(52(1 6 2 r 7 4 k21

-a15 42 62 71k + a1 5CL4 2 (61k

+a16 5 5ca6 2 ' 7 4 (c 4 2 - U 4 7 )kr )

B (X cx a o cc2 7 - ot O cx 2 a c

2 1 536222 -24)k 15 47 53 71 22 c 2 4 )k

+ 15 41 a 53(L22 - 2 4)k2 + a 1 5a2 2 4 6'53'74kn

+a 1 6 2 5 5 3 6 2c 7 4 ( 4 2 - 4 7 )r

A1  a 1 1c 4 7 a5 5 74
k 3 - a I c5 2cX6 2cx7 4

k

+a 1 5 4 7 6 2 7 1k3 -3 T 1 5 4 7 CL 62 71(52 - c54

Cc 15 a47at71 ( a52 - ct54)k 3r + I at a74 ((x41 c57 cl 1(147)h 3 T

+at 1 5 6 2 c 4 1 c 5 2 - 5 4 )k 3 Tr - 115 O4 2 (62a71 k

+a15a42 62t71 (152- a 5 4 )k 3
- 1 5 x4 2 a6 1 (c 5 2 rt5 T) '



B1 - 1 1al 2 5a 4 7ct5 3 7 27 4k k2

C t a CEa )(ki ~- a ( c t C f. C . -a_1 5 47 53 71 22 - a2 4)k 15 47 5 3 -6 2 7 1C 22 24

2 ,2
-a15cL21E4-.53E74k2 + C 1 5 c41 5 3ct6 2 ( 2 2  - ct z 4 rl

+a 1 5 a 4 2 a 5 3 a 6 1 ( c 2 2 - ct 24 )k2  + a 1 5 CE4 2 a 5 3 c 6 2 I 7 1 (.t 2 2  Q 24)k

A0  C-L lia 47"5 5'6 2 74 k n - c1 5 a4 7CL6 2 c7] (a5 2 - 4 3 T)

+a15 a 6 2 a 7 4 (a4 1 c5 7 - ' 5 1 ' 4 7 )k 3r

+a1 1 a4 2a 5 5a 6 2 7 4kn -C 1 5 6 1 7 4 (c 4 2 5 7 - a4 7 5 2 )kn

1ci".62 7 4 ( 41 5 2 -c51 4 2)k
3 ]

3
+a1 5 4 2 6 2 7 1 ( 5 2 - a5 4)k n

B0  11 25 4 7c.5 3 62 7 4k r ai5ci 2 1 i 4 7 53 6 2 7 4 k n
- 1 5 a4 7 a5 3c 6 2C7 1 (a 2 2  a 2 4 )k

2  + IIa25i42 5362 7 4 k
2

I

+a15(t 5 3 a 7 4 [ a 2 2 C 4 7  61 + t6 2 (a 2 1 ci4 2  -t 2 2 1 1
) ]1 2 r

+ 15( is 42 53 62 71(Z2 - 24) 2 ]

The value of the S.patial waveruml)er , k , is taken to h

given by the cavity dimension in Lhe flow di-ect ion, Thus,

kw- 1/ . ..

Thus, ::e can now n iw. i ca 1 ly specify a 1 I tI., n,.:f fic i ,nt..; ()f th

charactoristic otuat ion.

(31 ~ ~..AVCO IV i I



U
D. STABILITY ANALYSIS OF DF LASER MODEL

U The values of the laser parameters can be obtained from
the "gain equals loss" condition and Eqs. (216) and (220). The
"gain equals loss" condition specifies the gain in terms of cav-
ity loss and cavity length such that

e2g L = rI r2

where rI and r 2 are the mirror reflectivities. Thus we obtain
the population density of upper and lower states from

(X -X )  -g

The flux can be obtained from Eq. (216) where we assume
DXR

0- KF PX X o _ (uX 1 )Dt Fu F0  2,o hV

Thus K~ F~ U 2,0 cv(gThus - K~ X~o XD2 oh i/(og)

Using these criteria, the parameters for a wide range of
flow conditions were investigated. The laser conditions are
listed in Table 2. Over the entire range of mi:xing rates, flow
velocities, cavity lengths and pressures, use of the Routh cri-
terion specifies that the laser is stab]e. This can be simply
described by reference to the coefficients of Eq. (244). The
only matrix coefficient containing contribution from 'LR (the
density fluctuation induced flux variation) is '421 which appears
in coefficients B1 and B0 ; these affect only coefficients al and
a 0 . In general, Bl and B0 are significantly smaller than the
other terms in aI and a0 , resulting in both al and a 0 beina posi-S tive (if either of these coefficients were negative an unstable
root would occur).

dThe response of the laser to upstream-induced noise dis-
turbances may be described in terms of transfer functions derived
from

[A) Ix] [ F]

where [F] is the forcinjg function vector. The transfer function
between parameter xn and Fn is given by

I

xn det. IAp]

Fn det [A]

where [AF ] is the mat rix [A] with the nth cnlumn rep]aced by [1"].

AVC I VIJI i 1-



U
TABLE 2. LASER CONDITIONS INVESTIGATED

Cavity length (L) 0.1 - 3.0 m

Mixing length Z 1.0 - 10.0 crns

Flow velocity 103 - 3 x 10 3m/sec

Cavity pressure 1 - 10 torr

Cavity density 5 x 10 - 5 x 10- 3 kg/m 3

Laser mix 10 11e/5 D2 /0. 8 F2

M = 5.45

y = 1.59

Mirror Reflectivities

r = 0.98 r 2  0.88

A I I f
-AVCO \ i 1 1



FE..

The response,( of 5kch a ss mi is i. ~c ~d1
1/dot [A] Thte normal- I i zd, in, i~u i t-udes o I thii s fiiIct i 11 (, II 1 u:s-
trated in Figure 155. Tho reines I", uA S IfolMUi lip t0
f req ucnc ie s o f 10 5 a-,/ec , arjI ( tte.ai: I I ~ c. I-t'is , I
magnitude with a slope asvrptoin to 'FilTe response; reduces
in magnitude as cavity pressure is icesd

Obviously, this is only part of the ovor,-il trci-f( func-
tion, and further analysis is ncecessairy if th-e acts ilL 1 syte
response is to be determined.

E. DETAILED SYSTEM RESPONSE

The model developed here is aLir~ fi:t~ 0 rrall
laser behavior. A more detailed aind c :s:a vi icl
approach is requiredl if the full he-1 eoia' a
mod e med iuLm i ntek-racti ion i s to be)( in1est C- t i, I t (6 .9 F

analysis a simple acoustic or ca in flIuctuat-io'i m-; li 1 it, ',- e:s
not appear to Occur in the chcomica 1la- r e~
flowfield may result in other significant mec OC7 c l. ,.

The chemical laser cons;ists of at series1
flame sheets (Figure 541). The jets from)- the1 Tr0 ::(- IL!'r.-
normally in the transition rainge of ,1r1niar totu'h1 ( r*
.:here laminar instabilities of the fI lenf I P ' ust
These instabilities arc alkin to the alec- V .

in mixingl layers (.see f or exanle, Ki-murai (3-7) dT'a()
Fluctuations in tie l ocalI ga in aind feI pro"Or I .~ C , %,1 1('11 t
in modulation of laser outuut flIu>:. heersuch fa ~V
instablity can lead to an output instability is not Cleair. 'Th
coupl ing between the irray of mnixine- l avers is of iprai
if the flow.' field is driven by an uptemacoustic d ~'h'c
which is identical for all the shear I ay,, rn, thiis ioa r*. in
sigjnif icaint optical coupi ing. Hoeea fl( oe (

oscillation of the array of flIamne shesmay re-ta it, an a git
different behavior.

F. SUMMARY

A simplifi ed modf-l of a Uesni.ee r '
derived and a stability dna-iy!-;is; performedc~. 'I!i ia; is i i' i r
the laser is stable -across a wide rae~of eShiuqc' t

37. K inc ra , I ., T- n Ih Lv-gus i ( lilt )( 'm i; ia, . 1
1300, The ConmbuL;t ion Iris1ftLi tu LI (1 0

38. Toonj, rh.., s, iI nt , iz. i. , q topf()rt 1, .j k. , (n ', Y.
Ten1th Svn1:ir(i '.) onCmu 1i p. 130)1-1 '13, I
Combus:tion In~t ituti (1 ' ("))

~Lf.LAVCO



3) 10-

z
0

D i- 2

-IJ

cr

= I cm
10o1 4  105  106
ANGULAR FREQUENCY (RADS/SEC)

J6 756

F'igu re 55. Frequcyl( Pt . On ~ 1UM( Fult ill

AV':CO I-VI [HUT'T



Howcver, the simt I i fyi nc; ass r ti (Ps rmo , the 41o0,; I i j itv' of
a cou)linq occurrinq a a con : ,h ,c of I -- ., C 1t71 f I tcb 1 t cv
and as such wouId not appear in tho solutio n , oht in I in thi 1

work.

The above analysis provides a useful stairtin4 :)oint in
obtaining a description of pos.s ible mode--:?( it intr1-actlons an
supersonic mixinc; lasers. However, it ii fal from ('I t',' t aid
it is recommended that furthe- e:ti era-t ion of tie e',i. be-
havior of flame-sheet instabilities upon optic ii purior ' Ancce is
necessary.

G. GLOSSARY OF TERIS

a coefficients in E.. (244)

A coefficients in Eq. (244)

B coefficients in Eq. (244)

c speed of light

c s  sound speed

Cp specific heat

g gain

h enthalpy

k space transform variable

k kinetic rate coefficient

K effective rate coefficient (= ,k)

1 mixing length scale

L cavity length

M DF molecular mass

r mirror reflectlvities

p sas pressure

u gas velocity

t time

I



I

U

s time transformI variable

T temperature

x axial coordinate

aO Rf flux coupling coefficient in Eq. (219)

a coefficient in matrix Eq. (242)

Gladstone Dale Constant

Y ratio of specific heats

O degeneracy coefficient

mixing parameter

X laser wavelength

P gas density

PATM density at a pressure of 1 atm

o lasing cross section

intracavity flux

T reaction time constant

X mass fraction

AH enthalpy of reaction

o O/MDFI

Subsc iI) tri S

U upper state

1 lower state

g gronnd state

F formation rate

D deactiv ition r;,t,

* AVCO



SECTION VII

SUGGEST] ONS I'OR I'UTUR)E 1%;,SEAR1C1

U ~~~The dyflam ic molIs cols id Or u( in Sec tio n, I, IV zind VI ~x
mado s impliifying las sumz)ption a on i he nture o'f thle 1aarcx
In pirticular , unifor;-m values of- ai nU1 senI it ino hf a ::

is sur-cd 11 the cavi tv 'More ('u i t it t yve Lts~m' eeita
by perturbingj the actual steady-staite modes-.

The theory contained in Sections Il-TV, adV I o'T i re-
port deals not only '.,,ith possible yte nabIiie.,butal?
in the system transfer functions. Accord i:"' st il Ics of~Usystem output cimIn be Pred icted if externl1 pc t1r)-:("' C _ I~ rC c'
modeled. In particular, it would DQ1,3(, 1 1  to mal t altrh
lent nature of the nonuni form f lo%.'I f(Ad of ti -
Once the correlation (or dlistribut _ Ili) fune n
(i.e.*, refractive indexCI) funct ion is no*.: tlP _C ~ti S, 0o
the noise driver are know)..n. The oi~ ., t i a
alos vi tho% transfe r functiunl,tec luaieo''
tistics of the Jaae'r flu:: outLput. TI iin
the theory of I i'jht propac at iontho 5 tari1'ncca
to find the statS. sitics of ;\'ave- f sonI oftrt el +- C
wave. This problem is esecal i ' o t nocl e '

where the imperfect mixinq of the rra-Lcvant ea-ses can, "1 a
to predict the statistics of the-_ Fyste' nbmijnm

aV a .
Ca lCult inq tesl ~:~et
resonator. This is in facrt the oal r caWy o
that we knowq of for mak-inij such a c ile':l it ion.Al'riiwenv

only aippl ied it to, a str in-resounator onotvit t")

qeneralizable, to a circula-r uoet'as.c1.C"Ale..1tior:- of
this type canl be o d for e-ampleo, te eea e h o
betw.een modes an~d the modIi fi c'at ion of t he ou'n ra 2n-

dividual modes induced1 by an ox.tornal, Pt- rtUri in.V
that this tecim'iquc . 1 findl wierrinqwp a o o
resonator problems; in the, futuire.

AVCO r
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ad APPENDIX A

RdTHE PERTURBED RESONATOR

In this appendix we will treat the perturbation e.xan!:ion
of Section II somewhat more riciorous]v, thereby c] ri,'int
physical meaning of the acoustically induced p>rturbition o t,

electromagnetic wave in the resonator.

Writing the part of the electromagnetic wave which propa:et
to the right as

i(k 0 z-,ot) 0A
E(x,t) = u(x,t) e + C.C.

we find that u satisfies

u(x,t + I = JK(x,x' ,t) u(x' ,t) dx' (A-2

where K K + K1 ; K0 is the unperturbed prove :ator (i.e. , th e
propagator in the absence of the acoustic wavEl ; 1  ti. per-
turbation due to fluctuations in the dIensitV (acous,.ic ave') .nd
gain of the medium (see Section II); - and -' repesent (vctor)
positions in an x-y plane between the mirrors; and "= 21,'c is

he round-trip time. In the following we write x to denote

x = (x,y).

The time dependence in K1 is due to an acoustic osci]]aticn
w r 5 x 10 7 sec -I. Thiswhose frequency is very low comTpared to 1/-,o

means that

1 o << K (A-3)

9t 0o 1

and we therefore may ronstruct an equation for "u/,t (x,t) as

follows:

u _ 1- [u(x,t + ) - u(x,t)] - i. [.rV (x,,') u(x',t) I:.:'
0 (A-4 )

+ fV1 (x,x' ,t) u(x' ,t) dx']

AVCO fv i



where

V - [K( , ((xx') - x-x') (A-5)
0 0

and

V 1 K (X, t) (A-6)
10

UEquation (A-4) has bccn written in a form which makes it
identical with the Schrodinrer equation. Thus, we mae solve thi2
equation by the well known perturbation-theory techniques used in
quantum mechanics.

The integral operator V. represents an unperturbed, time-
independent "Hamiltonian" of the system, while V1 is t, e perturba-
tion. To calculate the behavior of u(x, t) (analogou l to the wave
function of quantum mechanics) we may expand u(x,t) any compltc
set {"n(x)} of space-dependent functions:

U(x,t) = E a n (t) 11 (xn (A-7)"n

As the set {Yn ) we choose the eigenfunctions of th. unpoe-t-rbed
Hamiltonian Vo, so that

A ' (x) f V (x,x') 1 (x') dx' (A-8)nn o n

i.e., 'n is the eigenfunction of eigenvalue ",n, Equation (A-8)
may be shown to be equivalent to

n (x) (I + i X )- K (x,x) i' (>U) dx' (A-g)no o n

or, for A nT ol <<

-iA

e no , (x) K (x,x')j (x') dx' (A-10)
n 0 n



which is the usual intoeial foui of the Cn gonveiue (equat ion of
a laser resonator. it will be shown below that the natural opt ica 1
frequency of mode n is

Wn = W + Re X 1

i.e. , Re Xn represents the frequency offse(t of mode n from tha-t
of the pure longitudinal mode of frequency o* Onl the other hm
-2 Im)~n represents the fractional energy loss per second of mode n.

Substituting Eqs. (A-7) and (A-8) into Eq. (A-4) gives

1 a + i aJV x am(t) f V, (x,x' t)Tm(:-' ) dx'

We now assume that the mode~s {T10} form a completo ortlin-
normal set. This assumption could be ~rigorously' justified if
the unperturbed Hamiltonian V0 were Hermitian; the .-,iccnvalue

Xwould then be real, corresponding to an unperturbe d cavit,
iwhich all riodes have the same value of net loss (los s inu2III

,-31 ii) . This will clearly not be the situation in a-n aIctual unl-
stable resonator. Hiowever, the only modcL; w hich rcintorcstino;
are the initial ly osc illating miode and thoseod: .-A:o-,(- net 1 02 :es
are nearly eqlual. to that of this initial modle; othe'r rodes (it
significantly hiqher not losses) will be stronel y da-mptd and will
therefore never be excited by the acoustic coupli na. Thus, it
should be a good approximation to assume that for the modes of
interest

im)X n 0 (A-12)

and therefore

Tn * 1illn nm (A-13)

Equation (A-1 2) implie-s that mu Itimlode ore( i 1 laIti onl i f, po;!; i hl
in our iiode 1 1ase(r . in) fiet sulch 1,-11h ;ha o i; 1)(r
observedI in (:,% LI)I ,asr.( i ili hot i:d ()! F1.(-l)
by 'if * (>1 and initecjrati nq over all x then yiel1ds,, with ti' o id of
Eq. IA-13)

1. R. Patrick, AE,, [,ivat-e cc' i inic ioni.
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da -ix a (t) a (t) (A-]4

dt na m nm

where

W nm(t) n kjl * (x) V 1 (x,x' ,t) W (X') dxcix' (A-15)

It will be noted that no use has been made so far of perturbatinn
theory; within the limits of our assumption that the modes of in-
terest are orthonormal Eq. (A-14) is exact.

The meaning of Eq. (A-14) may be elucidated by first ex-
amining its solution in the absenc. of the perturbation (i.e.,
with Wnm = 0). We then find that each amplitude an satisfies

dan
dt X a n(A-16)

with the solution
-iXt

a n = (0)e (A-17)

so that the electromagnetic wave propagating to the right in the
cavity is, from Eqs. (A-i) and (A-7)

Ei (koZ-u' t)

E(x,t) = a n(D) e 0 n n (x) + c.c (A-18)
,i

where wn' the natural frequency of mode n, is given by

n 0'o + nC( o + > n (A-19)

This is clear]y what one would (ex:poct: each oo, which is
present initially (at t = 0) continue.':; to o;cil, ',  1re~y it 1 ;
natrual frequency. Because we have not a] ]o,,.."d Io , .nv d'1:Qir,,
none of these modes decays with time; since' w, hve no1 a]11,WOi
for any coupling betwetn them, they do not afftct 0n anotho01r,
e i the r.
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Consider the direct ef f(ct of he pe(rturlat i(,i on an ilt--
ially oscillating mode. We denote V he i: i ia] mod" by thn ,ub-
script 0, and take \o = 0. (This i!; equivait to 1.i11(
to be the frequency of tlu initj l Imo e.) irnt-or.r rt a=l
theory allows us to i nore the amp] itudes of aIl the other maeL,_.;
to a first approximation. We thus hLave, from Eq. (A-14)

o = - i W (t) a { -0
dt 00) 0 (A-20

The real part of " C) (def ed n I.. (A-(} n cr .r15 on'::
to a shift in the frequeey of the in it-i, '., ,, ,.' , t. i -
aginary part corresponds to a ch,1ngeo in t ! n-t c .' , t lo:;s {(,
gain) per unit time of this node. Suc , 1 :;. c .  c, I' d c:
about as a standing tran;vezr - LIc(u1:;t Ic '' o.ci ] , il] -
tude; we would then expect the cavit. ]ong; to be 'm'.,ii 'tV! -t
twice the frequency of the acoustic- ,.,..,. ooil ne n of t
type is, in fact, used to mocle Ick 1a n. It co "'. I n r! r'"
lead to an instability if the initial m 1d. i:; n-t 1''.: omi I-
sity within the cavity, since the heatinc as-ociatC, "t , \'

loss modulation is then nonunlforui, a I ca e t<. I c I i l-
turbance. Indeed, our calculations c! !, I::: e c c: n .mL,
resonitor (Section V) shiow expl icit]" t ha t ile ': A n,:::. -
sity distribution is to h)e e-..ted so thi isn a po':: ib clmel -
date for an acoustic instability.

Let us now consid(er the effect of the acou-tic i.' t r i(,:1
on the other modes of the cavity. Agqain, w m:a ama: e" to I i
order that the amplitude a of the initial mrood, I : -i r
than that of any other mode. We may t hus i! r 1 1 '' I it ,I(;
am other than a, on the right o*- Eq. (A-14) , t 1
unity. This approximation is, of c-,rse, e 1 •  1 .
as long as the ecmatieno ,react toat; z n .
i.e., in the i it ial stages of any buildup C'- otlur cl'.'it.
The a n ts then satisfy

da
dt + iaa : - i (t) ao(t) MA-2]

It is useful at thi ; point to tm;m:id, .r o' l-,
which we label N and M fon dcfi it,'een:;. 1. N i1: ,' :, , m , i

frequency with the initially present muh ( ,. - U), .h;.l', ::,,.,
is offset in fre,.uency by an amount / 0. Thi' mod !,. m l i t u1.
satisfy

d a

d - i WNO(t) (A-2

AVC 0 1



~da M
dat~ + ia M  - i VO(t) (A-23)

dt M MO

Associated with a, will be the perturbation in the fie]Id,
t(x) , which we denote by uI (X,t) . it is seen i1uu, diately

I(x, t) W M i(N~t N) (A-24)
~Da NO Nsfie

The perturbation X,(t) will qenerally oscillate at an
acoustic frequency 'A' so Eq. (A-24) predict.s that ul will
oscillate at this frequency as well. This mans that the per-
turbation in the actual field E will oscillatc at 4 A ' , even

though the cavity mode being excited :ould ociilate natural ly
(i.e., in the absence of the perturbation) at the frequency ,
(since it is degenerate in frequency, with tlie initialf."l preo;e.,nt

mode). This result is expected: the itiode N i< in a ;ate of
forced oscillation, and it oscillates at the ciri\%tn fIequency

±wA-

Equation (A-24) is in the form of th, .t It in' e utnn ,
the flux perturbation in our treat:,.nt. in,.' ,1 n Ll is t I:
seen that this treatment pcrtains :.o the 1- 1 : Ix, t I1-)  1; F, '
with the bui Idup Cof a cavity mode ;.' ,- un'. . 4_'e'acy I:;
degenerate with that of the initial :oae . .' in <ct. ion 11
that this buildup does indeed lead to an inst ih I ity.

On the oth(,r hand, we no,.' conside- t h- W,-,il : J) mode
of type M, satisfy'ina Y>I. (A-23). Si!o:e c ' ii' ttes at
frequency' A, Eq. (A-23) prc dicts that the Puldup a,, will
be resonantly enhanced when

(A-24)
N A

Wc show in .,sec-t ion, ', " thant tY. ,  :_ .;',,,. §: : ~i. U~ :- -

type can also lead to an i n!ta;il ty, ait .:1t in the low,,-f lu(,Ic
limit.

Finally, we comm n t. on t ' er,,<,1 ' e1, 1-i(id,,n c,.' ,

iodes wh; ch are t'wn,-i t r ,,r!'s' ,., ' ,, (. / ]O-2f)
kliz in 1)1, o.perir t :;) . t.'cau.<, ,  f t , ; ' ],'', t , 1 :4 ,.
density \'.tr i '; with l.< .it en n th , . .,tr i .' t ,,.1: (1i1 "1C'-
tion. Tlh, nonlunifei:s "iy ,]:l thit t , (h': : t
mode f[- .1 ;'n li , ' r ' n, '...', 11 ! i , 1, , ; I t . 1 : :t;i- r :;'

us to f i Idl ( a C1t i m e r':;i , , , , , V ( '.' i ,
r(_<c ' l i ,-i 1i.<;, : '.vit':'. *~ , r i s':Ul , ,, oar I I,'  

t, : , : ,;,n 'r a

or neal rr'';,Ii , .-, I ( F . )t h .t '
thanld, ci 1 ctl 1 a ili': :}], 2",i':; e>l u;l t ,P 1P <1l 4l l ( ' 1i' :n t - -

pectcd to 0 ,b an ',' tb,:'KI
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APPENDIX B

PROPERTIES OF DEGENERATE MODES AIND CONIDITIONS
FOR TilEIR REI NIORCE1.ENT

We wish to derive several results stated without proof in
Section II.

First, we calculate the conditions und-r which two resonator
modes may be degenerate in their eigenfrequ, ncic-. Consider for
simplicity light modes contained in a box of lengith L and width W.
The eigenfrequrencies (measured in cm- 1 ) satisfy

mn

2 + n (B-]1/2
V [(-M (B-1)

where m and n are integers. For N.) 1 m/2L > n/2W we may writt,
this as

Vn Vwn + 2v n 2 (32)xmn] Me 2 V 1 'o

In order for vm-l, 0 to equal v n must satisfymn

2L 2 1)2 (B-3)

j i.e.,

n 4(V-4)

where X is the wave length of the I jqht.whee X: mo

Eq uation 13-4 sugqe t: an , ,, r n on th,- (I- " ( -
permit the frequc-ncy o'i1 ( a tran:v,'ol't!( , to , , i
with that of a lonlitu ii a] mode. For exan ', , ,I , ;, 5 cm,
L = 400 cm, and , 10-3 Cm. ;.e obtain

n " 16. ( -,

]d
-- -- " . . . . . . . . . . .--- ... .. . .. . ... . . . . .. .i l .. .. . I . .. ." .. . I I II



m
From this valuo we may a1Lso doti-rmine t! ,. n;ulrbo r n' of

transverse oscillatinns which are to b, ,':octod in an ucou:tic
wave of wave vector kA which satisfies the (ha:o-ria toing; con-
dition

k (B-6m-l,0 A m,n

For an acoustic model, contained in the tran.;v.u 'I in .sion of
the idealized re.Fonator of this appendix we th.'n have.

k 2ir 2in' (13-7)
A AW

so that

U
n' n n/2 - 8. (B- 8).

- This is, of course, only a qualitative result, mant to
indicate thc approx imate number of fringes to bh-, exp;cted . If
the approximate conditions of the model (uniform stea.-d n tate
properties for flux density and gain) were ri(lOreUs]I, true, re
would have to be a integer to match the acou tic buni, , cond i-
tions at the walls. In the actual case Eq. (B-8) is only
approximate.

Next we show that the wave scattercd by thlie psc i rat inc
(standinq acoustic wave) produces a flux perturba tion of the
same shape as the acoustic wave.

The theory of scatterinq of liqht by an ieou: tic wSvo
(Debye-Sears) predicts scattered or diffractcl waves at ang]Os
of

XIk= A a _ a
+ _- -+ - - (13-9)

X 2ia

with res.pect to the initial wave. Those wax'os , at l (aIt for a
confocal unstable resonator, will after one -oundl trip, return
at the .s "ame ang les.

The, interfercnco betwoon thoso ves and tI, unort i, bol
waves will be of the form

u * 1 + U 1 1 4 --
o0 (B-I U)

cof; k X

if ul has tho * i . i u' ,rt\.bY I fl,0,r 1 , (i .,. , i F V i L) a,

the or.i.i.. .. wv... T * ' 't i ' o I n I . . " -
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mom'

I
I

Finally, we justify our- as!:: ertion thlit the do:sity pertu r-
bation is independent of z , the linh)t po 0), 1y tion dI rection. i f
in the notation of Section II u] , and hc. . has , n act, a
dif ferent kl than o, th,n, aftor the common factor c:xpi i(kz - tr
is factored out, 1 can be written

coskax -( 

ilNL
Now the gain and heating; equations will be inconsisFe:n.t unle':<:
gl and ;: have this same acidit ional z behavior. I o..eve'r, :1
the thickness of the medium is of the order of half t;", scpta-il'I"'
of the mirrors (or less) in a typical case, the z-va-ition w.ill
be insufficient to cancel out the effects of the modc-medium int--
action and we are justified in neglecting it.

IVO

IE
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In this %-onr1 i c present a semii-Thouriir ti c- j ati f 1cm1-
tion for Eq. (60) of 1c. text.

Loet Ils -I ssumet heati II I a; o'nr 0,n ln3Ln (f w (1i 1-(c-
tion) andl uniformi in reelI ion (- h / 2 (h). n th j
case, Four ier and Lan] ace transforTm1inta Eq. (57) ldato

2 h( - 1) F] (c-) k Sin ? b

Q~~) (s + jvK-) [(- + ivk) 2 4CS 2 k 21Ci

whero F-1 (S) reloresents the- temporal hI'i ae ehtn
we h avo l e th1 e F- t rjn aform of a ul t j. (,: . T"-en!l , 1"',cn
tour i ntccgra ton %w.e obtain

-1 (xvO0s) L' -J) F (s) 0 e sC S ol F- v/c F
C2 2c 2

L C 21
(C-2)

FEXpal inq Foaou 0 we find t h i t t 1.- f i rEA two tuOm 551 nf t he

brackets are thie same as the expa-ns;icn of

(x=0,s) - 2 +_1)Va (C- 3)

where 2

c 2
S C Fv, 2- (C.--A,

+ Y
c-

S

60



and
2

1 \'

2v C
2 . (C- t)v 2 b v

1 + cv c 2

c
s C,

We may arrive at a result similar to ECT. (C-3) by oak n : tn'u
substitution

s + ivk - s + 2  (C-)

For v/c s - 0.5, we have

s + v2 zs + I.25 v (C-7)

N in the text we have take,, somewhat arbitrar r + v/h as th
dampins te,-m on i:ituitive irounds for all valuas of 'C s , since
We (',,.Ct t ',2 co:vective dampin, to be of the. ordie of (f'lush
time )-I

AV=
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APPENDIIX 1)

RESONATOR KS

1. EMPTY RESONATOR (STABIE)

There are many ways in which the cquat-icn- sati.,f od Lv
the eigonfunctions of an empty, stable refon tr- c -n 5K formu-
lated. In this appenCiix a deriva tion based o;n (];sc poten-
tial theory will be presented, since that pides tile most lucid
extension to the analysis to be presented later on.

The stcady-state wave, equation for a transvers coctro-
magnetic wav (Helmholtz equaticn) is aiven by ' 2 + k 2 : 0
where k2 = c2, ., is the wave frequenc ,, c is the c,,,. of

light and E is the Laplace-transformed trans,'ere cc '.t of
tile electric field. The solution to this ecuation cn ne "¢ritten
in terms of the iluycens-iresnel-Kirchhoff integral b" means of
Green's identities ()

E(x,y,z) - G s n (D-1

A A

where G is the appropriate Green's function, A is the area of
interest, Es and 'Es/On are the electric field and its normal
derivative on the surface respectively. Thus, once the fieold
and its normal derivatives on the bounding sur '-ices are given,
the field everywhere can be determine._ This al'roach has tile
disadvantage zhat it requires the sued fifcats on of both thle
electric field and its normal derivative on the surface. In
general, either the function or its nornal derivative will be
specified. These are the Dirichlet and Neumanmn bocun ary con-
ditions, respectively. Note that mix.ed condit ion.< air, il lowed
where Dirichlet is specified ever part of the houni. s" urface
and Neumann over the rest of it but not both at th tI,(, time
over the same surfacce. Thus, it is n,ct,.nsarv to or 11 aIe
the solution in terms of so called di poe ane S i1 Vot rge
distribution. For the Dirichlet problem this impli t hat(2)

(1) Born, M. and Wolf, E., Princil]es of O ic;, I'<r qanU Press, NY (1959)

(2) Mikhi in, S.G. , IntNYa] l tio(1 , Pe-clacvn Prs., N
(1957).
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E~xy~z - (x:' - G O(x x' dA (D)-2)

A

and the dipole layer ;i satisfies

E : V' + dA (D-3)

where E is the value of the electric fie]d on the boundr,- n
is the normal direction, A is the surface area and G is the aJ-
propriate Green's function for the problem at hand. For three-
dimensional problems it is

G(x,x') eikr (D-4)

r

Consider applyinq this procedure to the stahl resonator
shown in Fiqure D-l which consists of the tvo mirrors with ur-
equal radii of curvature separated by a distance D. In the
Fox-Li calcualtions for the stable resonator only the fic. 's cn
the mirrors are determined, that is only is seived for. Since
fields on the mirrors vanish Eq. (D-3) reduces to

ik + 1n S] + __ e C (D-5)
1 11 11 SI S 12

1 142

ikS 2 1  e ik 2 2  (D-6)

V2 + 11 n2 1  S21  + J 2 '1 2  -

NI H 2

where ;jl, 12, MI, M2 are the dipole layers and minor areas of
mirrors 1, 2, respe ctively; S12, S]I, $ 22 are the dist-nc,:a ,e-
tween the imirrors including :urv r a terms and t. .. (is t
of different points on the slime mirror. Writin, the V r~t t'.e
terms in El. (D-6) as ,11 zi and the firsIt and ].t t,rm in 1;.
(D-6) as Y2 v'2 these equations can L r'witten 1!;

fik 12
Y =j --0- (1)- 7)
1 12 Jn21 S12

2
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Figure D-1. E:Impty Stable Resonator
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ikS 21

f ik e - ()- 8)
+ 1 21

M 1

Substituting Eq. (D-8) into (D-7) results in the conventional
integral equations for the Fox-Li problem. (3) In order to s olve
these equations the paraxial approxiwation is made, that is, the
term proportional to S-2 in Eas. (D-7) and (D-3) is elected.
The question of what happens when thc resonator is loaded will
now be addressed.

2. LOADED RESONATOR (STABLE)

The Maxwell ecuations appropriate to the loaded resonator
are,

V c E - V (D-9)

V • Bz,0 (D-10)

V xE t (D-l1)

V x H = Co (D-12)

where it has been assumed that there are no free-char'e currents
flowing, but the medium responds to electromagnetic waves through
the polarization term.

Equations (D-9) and (D-10) can be combined into a single
wave equation,

V2 E 1 .2 32 1

V E - 1 E 2 P- V V ]P (D-13)
C 2 t t o

For transverse electromagnetic waves the I i;t . erm vanishes.
The polarization term is assumied to be giVn by

(3) Fox, A.G., I, T., B(I] Syst. I ch. J 40, 453 (1961).
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4- C ClIP o  ( x i + c.c) () ]I

where x is the complex dielectric sucjtibi Ii t,,. It! form in
terms of more fundamenItal lunt, i tic' i ( iv'n I.n A;> i .
Substituting Eq. (D-14) into the Laplace t!an:,ioriu of Eq. (D- "
results in

V2 ]+ k2 E =D (D-15)

where

k= 2 (i + 'r + ix + i r1c2 r, D- 6

0

where cr denotes a phenomenological loss term due to output
couplingj from the resonator ( < 0 for lasinc medium). The
solution to Eq. (D-16) can be written in th .,m form as
Eq. (D-i) . However, since again only the JfJold or the, normal
derivative would normally be specified it i.; n<ce sci: to re-
cast the problem in term, of one for the s 1 to OF 20201
charge layers. However because of the amplificat ion 1) the
medium it is now necessary to calculate the 'f, heto th
mirrors as well. The only difference in th(, (Oouh]lt equation
(Eq. [D--3]) would be that the Green's function lhas a Trowing
(decaying) part to it because of the complex valueo.;f k.
Hence special. attention has to be paid to the convr(,ncc p !O -

ertics of the various functions if equation.; of the ( rn :
(D-7) and (D-8) are to be derived. Mo.;t of ho ciff ieu] ties a r-
swept into finding the appropriate Green's funcLion.

At this point an a]ternative proccdurc, could 1)i' L s>,k.
This is the method of multiple scalinqj. Thi; tccln , s
used to essential]y eliminate the ra)id vari it ion in t, h
direction (direction normal to the mirrors) I vm t ';. , ins.
To implcment this the fields are 'o<,11%." to ha ', , \ ,irl,-
tions in the K> direction. Substitut in: I his rr-(I) m ilt: Ec i . (I)-15)
and averaging over the fast variat io, r,::u I t in

2 2 2
VT E + 2 -k I., + k' E i " E Y E (D)-17)T Iz2 i

C
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where 2
k 2 ( 2

z c - 1 - - - (I 1 ')
c/

VT is the transverse Laplacian operator.

The solution to Eq. (D-17) can in principle bu sound by
the following procedure:

E(r) ( 2 .i o r) f d 3(

(for a homogeneous medium) arid G satisfeJ,;,

V 2G + 2ik - k' (r-r') (1)-20)T z Oz

Note that E and G have to be found in tht' v-in t ire i I Vtv,",:
the mirrors, not just on the mirrors tntm:,' xa,,; a,; ,. L,'n ta',
case for the empty resonator.

Even assuming thiat the Gren's futncti :n cin fu:d
Eq. (D-19) is still an integral evv:. , ;.hi 1. o; , b,
solved, either numerically or in a p .rti::'t , ' , ' :r:
appproximation) . Solving the coupl i :at W ;. :. -]1 ) :1
(D-20) is more akin to a scatter in: ca,. i:, i. it 1'
using the Green's theorem of the prevou:; :; I,:,.

3. LOADED RESONATOR (UNSTABLIE)

The unstable resonator if- evn moivor cI:.' li,' :,
D-2 illustrates why thi. if the c '. 'i,, w.:' U . (b-lW)
appl ie . Hlowever, it has to hf' .;ol1. A ' !I ;'' I I
the solution:; have to he, tItc hod ,c r . .) ., -

gion I c(ntains both a i ht-;o ' '' , '

II contains only a ri';it-(nojn<; w(%.4 w t 1 n .1(1 :
t,iinn a riql.t noig ",.:v,, t with '. ,''' ( C) t ,
analysi wh, er the , t ion : , ilI ;rI ,

, : 0 b ,c :na th,, 1,::; i:; ci|]<ulat it I :
W ,IV ( .1 1( ]( t-l ,i ; ,t , i ' ] w . I', 1 1f,: 1 , f : ' . ;:, . '.

ae'; in; Il anl ' piIl d i ' 1 11 1():l (' :ill.

t h-' (I i ft f o 1outI']( 11 . I i: th( f I Ii in P.qi l Ia 1 'I I vi.
by (1(,lI t , ' 2.. , , .r ,i C

(4) Goi ", i.T ,nd I1'(a rthy , , , (1 pt ,;(. A,, 67 222
(197 7) .
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ik (z + d + D) ik
E f (r, 0) cG- G(p i~(-

where f and G are to be determined. The boundlary condlition E 0
on the two mirrors lead to

f(o,r) -D~ hr + d) (D-22)

f (D,r) C(r/)(D-23)
d

where the magnification is given by M = (1) + d) /d and tlir lollcli-
tUdinal mode number, k, n7-/D. Substituting 1Eq. (D-21) into
(D-17) leads to

2f
f Tf (D-24)

+ 2ik 2()?5

wheo 2'' as the t ra-nsve rse 1,-11a i a 1m 12 ncy Ii inJir ic I aid IiK i C~I
coord inaites,- i n fthe two equa t i nsano 7 -rc 2 -- k St~
ja in . Fquations (D-24) , andl (D-25) v.orc scl1ve(d Lv1M 1d

McCarthy (4) using an assumed-( (;aini prof' 1c.. The e -onA:tn
gain profile is given by the Rigrod cclua-ti on,

vcVz- (1 -s- G D2.

w ee V .is thr flu"; vuIoc i t"' o-,f tl( he 1G (1 ill urn , 1; I (1(' !" valt

t fle , :5 are0 the ()mt 1C1) I r i ~] ~ na on i an ' i til pl lh

f ields ((D-24) , (D~-25) 1 are ('Ol1'( t It (fir iii tf It( ti i>~ P
Si1lcm' tlh two t ie 1d!; 11-( d'd' r l I - 1 ,"

tcm -, this, !;lii tim' sm f;,1-cOWmsmtn 1.V!! :': p 11 1 li.
pI ex. A covmlt -(' nii:..'rical tilt1 :i: !of th11! . ( - ;) (- )
and (D)-20 ) is descri Led in ~'~
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In thle initegra IfIoru I t i on of te I w moe-mce.: ium n;i~ t
the solution to the ecqui Iibrium prob I tn; i n wri tttn a;U, ~

00

whr K0iste prorat ~ug~n,-ir--~(Aoo.tr
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APPENDIX E:

DERIVATION OF TH'iE POLAR 1ZAT IO,* T EPN-

in the; simplei approach takenl hor! th" Q1(ct ru:I are
li.Since the mediumt rtc11 .I

the c'1 Ot iic f id ''en b", the illd vji a't S -
a s theic ex te rnal1 f iel d. (in a eer1 a , -.. ,-

ti ye f icul,! woul1dc be F f f =- + 111/ 3 %-:wr e ;2 i , the 1 t

shicldincj. ) (1)

ThLIs individuail ci ection!; OL\ o 1 i *'w1 12

2

X +4 x -4 x 1 1

where ! are the daminpi!l(:..t 1  'i~~ti

freqluency anrd FE is the ctmLt x;~1t I ~ i.I

(B-i) leads to

I.,.

where c* c is the cemple x conju'jatc. The dipole moetof the
molocule is given by

p = -ex (1.- 3)

Finally the maCrWoUc)j'ic' pol ir i .,tion for a dlenw-itv of N icl-
per cubic centirmete r i!; qivc.

A, Nex

or
j!~ t

2 o i
mP L= -N(] - _ (:
mP -N2l 2 u.(-

Trhe ef fects of a 5pitijal ly vati,',ii . .1 n 1 1 1
fwsh ion. 'I'll Fourior to I-nio I I Z' 1 1 -

na ry parts q i yr-n b~y
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N2 02 2

kr i R k

N Ne 0 (E- 6)

where R ; ,:2 i,*132) 2 + 21c 2.~ Thus the real pa rt mod if i es the:
index of refracticonwi the- pra mr ar t pruedvcss-m ;
emniss ion of absorption dlepend fl(j upon the popu] C: t ion iflverYS 10.
In Section IV Pis written as follows:

I2P = cx E + ic X i EL7

Comparing Eq. (E-7) with Ecls. (E-5) and (E-6) lea-ds to

Ne2 20 0 2

Xr -Ne 2 (iC, 0X m R
0

in addi Lion P -is defineod in termi.,s of. -qtien (-)ai
(E- 9) give a sirmle del in ition of the I recluericy dce;undnceIl( 0

III the selniclas .;ical trea -tment- (ence.'th (sI melu1tedo(1 i n
is obtained by lcttinq'I- be nei atit (2 a~~t i i: thInfc'
of saturation enter y by makine it -lili a vu~ t .Thus a
re~lati oli;hip betvicor the I Jca~ ia tr.tm~:.~' tecune
trc Utient i5 lt indL idiCnti yingj ,iit h tht, qlin of thle
med ium. The ginm is given by

2

k 2 c2 No 
I

0

HI e-nc e

(3 2 2 ( - l

ohc0

Finla I I y t h is; I I I .: t1 1 1( Ie 11i ;,I i cn t" 1'' 1. itt : I inl: of
the qa i:l; Is,

2. Yairiv, A., Ium I.V'sB:. .. , (if()

17dAVCLJ



This result is derivedl on the basis of assuni that 11 and qi
remained constant over the tirnio period of interust. Te C. I 2,I _'ra Ii
zation alosbohothstocaqanistet(, n

fored, bth(xis eassm to 'v a conoluion inea ofSe o

where x is given by Eqs. (E-8) and (E-9).
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